1
|
Chen Z, Lv Z, Zhuang Y, Saiding Q, Yang W, Xiong W, Zhang Z, Chen H, Cui W, Zhang Y. Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300180. [PMID: 37230467 DOI: 10.1002/adma.202300180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The aberrant mechanical microenvironment in degenerated tissues induces misdirection of cell fate, making it challenging to achieve efficient endogenous regeneration. Herein, a hydrogel microsphere-based synthetic niche with integrated cell recruitment and targeted cell differentiation properties via mechanotransduction is constructed . Through the incorporation of microfluidics and photo-polymerization strategies, fibronectin (Fn) modified methacrylated gelatin (GelMA) microspheres are prepared with the independently tunable elastic modulus (1-10Kpa) and ligand density (2 and 10 µg mL-1 ), allowing a wide range of cytoskeleton modulation to trigger the corresponding mechanobiological signaling. The combination of the soft matrix (2Kpa) and low ligand density (2 µg mL-1 ) can support the nucleus pulposus (NP)-like differentiation of intervertebral disc (IVD) progenitor/stem cells by translocating Yes-associated protein (YAP), without the addition of inducible biochemical factors. Meanwhile, platelet-derived growth factor-BB (PDGF-BB) is loaded onto Fn-GelMA microspheres (PDGF@Fn-GelMA) via the heparin-binding domain of Fn to initiate endogenous cell recruitment. In in vivo experiments, hydrogel microsphere-niche maintained the IVD structure and stimulated matrix synthesis. Overall, this synthetic niche with cell recruiting and mechanical training capabilities offered a promising strategy for endogenous tissue regeneration.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
2
|
Shang Y, Wang G, Zhen Y, Liu N, Nie F, Zhao Z, Li H, An Y. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin Med J (Engl) 2023; 136:2017-2027. [PMID: 36752783 PMCID: PMC10476794 DOI: 10.1097/cm9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 02/09/2023] Open
Abstract
ABSTRACT In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Collapse
Affiliation(s)
- Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 2021; 54:e11055. [PMID: 34133539 PMCID: PMC8208772 DOI: 10.1590/1414-431x2021e11055] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.
Collapse
Affiliation(s)
- J Girón
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - E Kerstner
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Medeiros
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Oliveira
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - G M Machado
- Programa de Gradução em Odontologia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - C F Malfatti
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células Tronco, Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Lee DJ, Miguez P, Kwon J, Daniel R, Padilla R, Min S, Zalal R, Ko CC, Shin HW. Decellularized pulp matrix as scaffold for mesenchymal stem cell mediated bone regeneration. J Tissue Eng 2020; 11:2041731420981672. [PMID: 33414903 PMCID: PMC7750895 DOI: 10.1177/2041731420981672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/28/2020] [Indexed: 02/01/2023] Open
Abstract
Scaffolds that are used for bone repair should provide an adequate environment for biomineralization by mesenchymal stem cells (MSCs). Recently, decellularized pulp matrices (DPM) have been utilized in endodontics for their high regenerative potential. Inspired by the dystrophic calcification on the pulp matrix known as pulp stone, we developed acellular pulp bioscaffolds and examined their potential in facilitating MSCs mineralization for bone defect repair. Pulp was decellularized, then retention of its structural integrity was confirmed by histological, mechanical, and biochemical evaluations. MSCs were seeded and proliferation, osteogenic gene expression, and biomineralization were assessed to verify DPM's osteogenic effects in vitro. MicroCT, energy-dispersive X-ray (EDX), and histological analyses were used to confirm that DPM seeded with MSCs result in greater mineralization on rat critical-sized defects than that without MSCs. Overall, our study proves DPM's potential to serve as a scaffolding material for MSC-mediated bone regeneration for future craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Dong Joon Lee
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Miguez
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Periodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Jane Kwon
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Neurology and Neurosurgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Renie Daniel
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ricardo Padilla
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel Min
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Rahim Zalal
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Hae Won Shin
- Department of Neurology and Neurosurgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Antibacterial Bio-Based Polymers for Cranio-Maxillofacial Regeneration Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cranio-maxillofacial structure is a region of particular interest in the field of regenerative medicine due to both its anatomical complexity and the numerous abnormalities affecting this area. However, this anatomical complexity is what makes possible the coexistence of different microbial ecosystems in the oral cavity and the maxillofacial region, contributing to the increased risk of bacterial infections. In this regard, different materials have been used for their application in this field. These materials can be obtained from natural and renewable feedstocks, or by synthetic routes with desired mechanical properties, biocompatibility and antimicrobial activity. Hence, in this review, we have focused on bio-based polymers which, by their own nature, by chemical modifications of their structure, or by their combination with other elements, provide a useful antibacterial activity as well as the suitable conditions for cranio-maxillofacial tissue regeneration. This approach has not been reviewed previously, and we have specifically arranged the content of this article according to the resulting material and its corresponding application; we review guided bone regeneration membranes, bone cements and devices and scaffolds for both soft and hard maxillofacial tissue regeneration, including hybrid scaffolds, dental implants, hydrogels and composites.
Collapse
|
7
|
Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micro-computed tomography (micro-CT) is a consolidated imaging technology allowing non-destructive three-dimensional (3D) qualitative and quantitative analysis by the observation of microstructures with high resolution. This paper aims at delivering a structured overview of literature about studies performed using micro-CT in dentistry and maxillofacial surgery (MFS) by analyzing the entire set of articles to portray the state of the art of the last ten years of scientific publications on the topic. It draws the scenario focusing on biomaterials, in vitro and in/ex vivo applications, bone structure analysis, and tissue engineering. It confirms the relevance of the micro-CT analysis for traditional research applications and mainly in dentistry with respect to MFS. Possible developments are discussed in relation to the use of the micro-CT combined with other, traditional, and not, techniques and technologies, as the elaboration of 3D models based on micro-CT images and emerging numerical methods. Micro-CT results contribute effectively with whose ones obtained from other techniques in an integrated multimethod approach and for multidisciplinary studies, opening new possibilities and potential opportunities for the next decades of developments.
Collapse
|
8
|
Hu C, Wu L, Zhou C, Sun H, Gao P, Xu X, Zhang C, Liang J, Fan Y, Sun J, Zhou X, Zhang X. Berberine/Ag nanoparticle embedded biomimetic calcium phosphate scaffolds for enhancing antibacterial function. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
In the past decade, biomimetic calcium phosphate (CaP) ceramics have been considered as practicable grafts and biomaterial substitutes in repairing jaw bone defect after tumor resection or traffic accident. Nowadays, increasing incidence of biomedical material-associated infection has raised a concern when applying these materials. In this work, a new porous CaP scaffold with antibacterial coating was proposed. This biomimetic scaffold was composited with berberine (BBR), Ag nanoparticles (nAg), and silk fibroin (SF). The microstructures and phase composition of the scaffolds were analyzed. The cytocompatibility and osteogenic potential of the prepared samples were evaluated in vitro. The scaffolds held hierarchical structure: the first-level porous CaP ceramic with micron pores ranged from 250 to 600 µm; the second-level spongy-like structure with abundant capillary pores ranged from 500 nm to 10 µm; and the third-level structure was achieved by filling BBR, nAg, and SF gel coatings into the above porous structures. The experimental results showed that the antimicrobial capability of single BBR coating is inconspicuous. However, the introduction of nAg could significantly promote the antibacterial effect of scaffolds. At the same time, such scaffolds showed improved osteoinductivity. This new biomimetic CaP scaffold with antibacterial and osteoinductive properties may be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Cheng Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Peng Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Chenxi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
| |
Collapse
|
9
|
Bessonov I, Moysenovich A, Arkhipova A, Ezernitskaya M, Efremov Y, Solodilov V, Timashev P, Shaytan K, Shtil A, Moisenovich M. The Mechanical Properties, Secondary Structure, and Osteogenic Activity of Photopolymerized Fibroin. Polymers (Basel) 2020; 12:E646. [PMID: 32178313 PMCID: PMC7182815 DOI: 10.3390/polym12030646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Previously, we have described the preparation of a novel fibroin methacrylamide (FbMA), a polymer network with improved functionality, capable of photocrosslinking into Fb hydrogels with elevated stiffness. However, it was unclear how this new functionality affects the structure of the material and its beta-sheet-associated crystallinity. Here, we show that the proposed method of Fb methacrylation does not disturb the protein's ability to self-aggregate into the stable beta-sheet-based crystalline domains. Fourier transform infrared spectroscopy (FTIR) shows that, although the precursor ethanol-untreated Fb films exhibited a slightly higher degree of beta-sheet content than the FbMA films (46.9% for Fb-F-aq and 41.5% for FbMA-F-aq), both materials could equally achieve the highest possible beta-sheet content after ethanol treatment (49.8% for Fb-F-et and 49.0% for FbMA-F-et). The elasticity modulus for the FbMA-F-et films was twofold higher than that of the Fb-F-et as measured by the uniaxial tension (130 ± 1 MPa vs. 64 ± 6 MPa), and 1.4 times higher (51 ± 11 MPa vs. 36 ± 4 MPa) as measured by atomic force microscopy. The culturing of human MG63 osteoblast-like cells on Fb-F-et, FbMA-F-et-w/oUV, and FbMA-F-et substrates revealed that the photocrosslinking-induced increment of stiffness increases the area covered by the cells, rearrangement of actin cytoskeleton, and vinculin distribution in focal contacts, altogether enhancing the osteoinductive activity of the substrate.
Collapse
Affiliation(s)
- Ivan Bessonov
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- JSC Efferon, 143026 Moscow, Russia
| | - Anastasia Moysenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Anastasia Arkhipova
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- Regional Research and Clinical Institute (“MONIKI”), 129110 Moscow, Russia
| | - Mariam Ezernitskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
| | - Vitaliy Solodilov
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Konstantin Shaytan
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Alexander Shtil
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail Moisenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| |
Collapse
|
10
|
Nie X, Wang DA. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomater Sci 2018; 6:2798-2811. [DOI: 10.1039/c8bm00772a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In orthopaedic surgery, the reconstruction of musculoskeletal defects is a constant challenge.
Collapse
Affiliation(s)
- Xiaolei Nie
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Dong-An Wang
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| |
Collapse
|