1
|
Yuan J, Wang S, Yang J, Schneider KH, Xie M, Chen Y, Zheng Z, Wang X, Zhao Z, Yu J, Li G, Kaplan DL. Recent advances in harnessing biological macromolecules for wound management: A review. Int J Biol Macromol 2024; 266:130989. [PMID: 38508560 DOI: 10.1016/j.ijbiomac.2024.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Shuo Wang
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China
| | - Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 23 Spitalgasse, Austria
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong.
| | - Jia Yu
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
2
|
Motealleh A, Kart D, Czieborowski M, Kehr NS. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43755-43768. [PMID: 34464080 DOI: 10.1021/acsami.1c13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomaterial-associated infections are a major cause of biomaterial implant failure. To prevent the initial attachment of bacteria to the implant surface, researchers have investigated various surface modification methods. However, most of these approaches also prevent the attachment, spread, and growth of mammalian cells, resulting in tissue integration failure. Therefore, the success of biomaterial implants requires an optimal balance between tissue integration (cell adhesion to biomaterial implants) and inhibition of bacterial colonization. In this regard, we synthesize bifunctional nanomaterials by functionalizing the pores and outer surfaces of periodic mesoporous organosilica (PMO) with antibacterial tetracycline (Tet) and antibacterial and cell-adhesive bipolymer poly-d-lysine (PDL), respectively. Then, the fabricated TetPMO-PDL nanomaterials are incorporated into alginate-based hydrogels to create injectable and 3D-printable nanocomposite (NC) hydrogels (AlgL-TetPMO-PDL). These bifunctional nanomaterial and 3D-printable NC hydrogel show pH-dependent release of Tet over 7 days. They also enhance the proliferation of eukaryotic cells (fibroblasts). TetPMO-PDL is inactive in reducing Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis biofilms. However, AlgL-TetPMO-PDL shows significant antibiofilm activity against P. aeruginosa. These results suggest that the incorporation of TetPMO-PDL into AlgL may have a synergistic effect on the inhibition of the Gram-negative bacterial (P. aeruginosa) biofilm, while this has no effect on the reduction of the Gram-positive bacterial (S. aureus and E. faecalis) biofilm.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Sihhiye, 06100 Ankara, Turkey
| | - Michael Czieborowski
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Nermin S Kehr
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|