1
|
Xu Y, Luo W, Deng H, Hu X, Zhang J, Wang Y. Robust antibacterial activity of rare-earth ions on planktonic and biofilm bacteria. Biomed Mater 2024; 19:045014. [PMID: 38740038 DOI: 10.1088/1748-605x/ad4aa9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Wei Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hui Deng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
2
|
Gholibegloo E, Ebrahimpour A, Mortezazadeh T, Sorouri F, Foroumadi A, Firoozpour L, Shafiee Ardestani M, Khoobi M. pH-Responsive chitosan-modified gadolinium oxide nanoparticles delivering 5-aminolevulinic acid: A dual cellular and metabolic T1-T2* contrast agent for glioblastoma brain tumors detection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Zhang Y, Pei R. Editorial: Special issue on advances in nanomedicine. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac8fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Nanomaterials are being increasingly used to develop new methods of disease diagnosis and treatment, thereby providing novel paradigms to break through the current limitations of medicine. However, there is still a long way toward the complete revolution for nanomedicine in the diagnosis and treatment of diseases. As nanoparticles are highly complex products and difficult to characterize, there are still many challenges. This special issue on Advances in Nanomedicine includes a series of topical reviews and original research articles that highlight the recent advances in diagnosis and therapy of nanomaterials.
Collapse
|
4
|
Liu K, Liu C, Xia J. The r1 relaxivity and T1 imaging properties of dendrimer-based manganese and gadolinium chelators in magnetic resonance imaging. Front Bioeng Biotechnol 2022; 10:1004414. [PMID: 36299282 PMCID: PMC9589045 DOI: 10.3389/fbioe.2022.1004414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
We report the preparation and characterization of gadolinium (Gd)- or manganese (Mn)-loaded dendrimers and Gd-loaded dendrimer-entrapped gold nanoparticles (Gd-Au DENPs) to examine the relationship between the number of metal ion chelators and r1 relaxivity. In this study, amine-terminated fifth-generation poly(amidoamine) dendrimers (G5.NH2) modified with different numbers of DOTA-NHS chelators were used to chelate Gd and Mn ions. The remaining amine groups were then acetylated completely, followed by the use of materials with better r1 relaxivities and T1-weighted imaging performances as templates to synthesize Gd-Au DENPs. The Gd and Mn chelators as well as Gd-Au DENPs were characterized via different techniques. We show that the r1 relaxivity and T1 imaging performance increase with loading of greater numbers of Gd and Mn ions on the G5.NH2 and that the acetylation process affects the relaxivity and imaging properties to a certain extent. After entrapment with Au NPs, the r1 relaxivity and T1-weighted imaging performance of Gd-Au DENPs decrease with greater loading of Au NPs. This systematic study of the relaxivities and T1-weighted imaging performances of Gd, Mn, and Gd-Au DENP chelators are expected to be a theoretical basis for developing multifunctional dual-mode contrast agents.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
- *Correspondence: Jindong Xia,
| |
Collapse
|
5
|
Bao J, Guo S, Zu X, Zhuang Y, Fan D, Zhang Y, Shi Y, Pang X, Ji Z, Cheng J. Magnetic vortex nanoring coated with gadolinium oxide for highly enhanced T 1-T 2 dual-modality magnetic resonance imaging-guided magnetic hyperthermia cancer ablation. Biomed Pharmacother 2022; 150:112926. [PMID: 35427819 DOI: 10.1016/j.biopha.2022.112926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, about 30% of magnetic resonance imaging (MRI) exams need contrast agents (CAs) to improve the sensitivity and quality of the images for accurate diagnosis. Here, a multifunctional nano-agent with ring-like vortex-domain iron oxide as core and gadolinium oxide as shell (vortex nanoring Fe3O4 @Gd2O3, abbreviated as VNFG) was firstly designed and prepared for highly enhanced T1-T2 dual-modality magnetic resonance imaging (MRI)-guided magnetic thermal cancer therapy. After thorough characterization, the core-shell structure of VNFG was confirmed. Moreover, the excellent heat generation property (SAR=984.26 W/g) of the proposed VNFG under alternating magnetic fields was firmly demonstrated. Furthermore, both in vitro and in vivo studies have revealed a good preliminary indication of VNFG's biological compatibility, dual-modality enhancing feature and antitumor efficacy. This work demonstrates that the proposed VNFG can be a high-performance tumor diagnosis and theranostic treatment agent and may have great potential for clinical application in the future.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshuang Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yupeng Shi
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Zhenyu Ji
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021; 13:2989. [PMID: 34503029 PMCID: PMC8434540 DOI: 10.3390/polym13172989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
Collapse
Affiliation(s)
- Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|