1
|
Motaharinia A, Drelich JW, Sharif S, Ismail AF, Naeimi F, Glover A, Ebrahiminejad M, Bakhsheshi-Rad HR. Overview of porous magnesium-based scaffolds: development, properties and biomedical applications. MATERIALS FUTURES 2025; 4:012401. [PMID: 39758543 PMCID: PMC11694181 DOI: 10.1088/2752-5724/ad9493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 01/07/2025]
Abstract
Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity. This review aims to thoroughly explore various fabrication procedures used to create metallic scaffolds, with a specific focus on those made from Mg-based alloys. Both traditional manufacturing techniques, including the directional solidification of metal-gas eutectic technique, pattern casting, methods using space holders, and modern fabrication methods, which are based on additive manufacturing, are covered in this review article. Furthermore, the paper highlights the most important findings of recent studies on Mg-based scaffolds in terms of their microstructure specifications, mechanical properties, degradation and corrosion behavior, antibacterial activity, and biocompatibility (both in vivo and in vitro). While extensive research has been conducted to optimize manufacturing parameters and qualities of Mg-based scaffolds for use in biomedical applications, specifically for bone tissue engineering applications, further investigation is needed to fabricate these scaffolds with specific properties, such as high resistance to corrosion, good antibacterial properties, osteoconductivity, osteoinductivity, and the ability to elicit a favorable response from osteoblast-like cell lines. The review concludes with recommendations for future research in the field of medical applications.
Collapse
Affiliation(s)
- Amir Motaharinia
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Safian Sharif
- Advanced Manufacturing Research Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Farid Naeimi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Alexandra Glover
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Mahshid Ebrahiminejad
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
2
|
Daskalakis E, Hassan MH, Omar AM, Acar AA, Fallah A, Cooper G, Weightman A, Blunn G, Koc B, Bartolo P. Accelerated Degradation of Poly-ε-caprolactone Composite Scaffolds for Large Bone Defects. Polymers (Basel) 2023; 15:polym15030670. [PMID: 36771970 PMCID: PMC9921763 DOI: 10.3390/polym15030670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
This research investigates the accelerated hydrolytic degradation process of both anatomically designed bone scaffolds with a pore size gradient and a rectangular shape (biomimetically designed scaffolds or bone bricks). The effect of material composition is investigated considering poly-ε-caprolactone (PCL) as the main scaffold material, reinforced with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP) and bioglass at a concentration of 20 wt%. In the case of rectangular scaffolds, the effect of pore size (200 μm, 300 μm and 500 μm) is also investigated. The degradation process (accelerated degradation) was investigated during a period of 5 days in a sodium hydroxide (NaOH) medium. Degraded bone bricks and rectangular scaffolds were measured each day to evaluate the weight loss of the samples, which were also morphologically, thermally, chemically and mechanically assessed. The results show that the PCL/bioglass bone brick scaffolds exhibited faster degradation kinetics in comparison with the PCL, PCL/HA and PCL/TCP bone bricks. Furthermore, the degradation kinetics of rectangular scaffolds increased by increasing the pore size from 500 μm to 200 μm. The results also indicate that, for the same material composition, bone bricks degrade slower compared with rectangular scaffolds. The scanning electron microscopy (SEM) images show that the degradation process was faster on the external regions of the bone brick scaffolds (600 μm pore size) compared with the internal regions (200 μm pore size). The thermal gravimetric analysis (TGA) results show that the ceramic concentration remained constant throughout the degradation process, while differential scanning calorimetry (DSC) results show that all scaffolds exhibited a reduction in crystallinity (Xc), enthalpy (Δm) and melting temperature (Tm) throughout the degradation process, while the glass transition temperature (Tg) slightly increased. Finally, the compression results show that the mechanical properties decreased during the degradation process, with PCL/bioglass bone bricks and rectangular scaffolds presenting higher mechanical properties with the same design in comparison with the other materials.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Mohamed H Hassan
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Abdalla M Omar
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Anil A Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Paulo Bartolo
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Kowalewicz K, Waselau AC, Feichtner F, Schmitt AM, Brückner M, Vorndran E, Meyer-Lindenberg A. Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Front Bioeng Biotechnol 2022; 10:998254. [PMID: 36246367 PMCID: PMC9554004 DOI: 10.3389/fbioe.2022.998254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the positive effects of magnesium substitution on the mechanical properties and the degradation rate of the clinically well-established calcium phosphate cements (CPCs), calcium magnesium phosphate cements (CMPCs) are increasingly being researched as bone substitutes. A post-treatment alters the materials’ physical properties and chemical composition, reinforcing the structure and modifying the degradation rate. By alkaline post-treatment with diammonium hydrogen phosphate (DAHP, (NH4)2HPO4), the precipitation product struvite is formed, while post-treatment with an acidic phosphate solution [e.g., phosphoric acid (PA, H3PO4)] results in precipitation of newberyite and brushite. However, little research has yet been conducted on newberyite as a bone substitute and PA post-treatment of CMPCs has not been described in the accessible literature so far. Therefore, in the present study, the influence of an alkaline (DAHP) or acid (PA) post-treatment on the biocompatibility, degradation behavior, and osseointegration of cylindrical scaffolds (h = 5.1 mm, Ø = 4.2 mm) produced from the ceramic cement powder Ca0.75Mg2.25(PO4)2 by the advantageous manufacturing technique of three-dimensional (3D) powder printing was investigated in vivo. Scaffolds of the material groups Mg225d (DAHP post-treatment) and Mg225p (PA post-treatment) were implanted into the cancellous part of the lateral femoral condyles in rabbits. They were evaluated up to 24 weeks by regular clinical, X-ray, micro-computed tomographic (µCT), and histological examinations as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis and compared with tricalcium phosphate (TCP). All materials showed excellent biocompatibility and rapid osseointegration. While TCP degraded only slightly, the CMPCs showed almost complete degradation. Mg225d demonstrated significantly faster loss of form and demarcability from surrounding bone, scaffold volume reduction, and significantly greater degradation on the side towards the bone marrow than to the cortex than Mg225p. Simultaneously, numerous bone trabeculae have grown into the implantation site. While these were mostly located on the side towards the cortex in Mg225d, they were more evenly distributed in Mg225p and showed almost the same structural characteristics as physiological bone after 24 weeks in Mg225p. Based on these results, the acid post-treated 3D powder-printed Mg225p is a promising degradable bone substitute that should be further investigated.
Collapse
Affiliation(s)
- Katharina Kowalewicz
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Manuel Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Andrea Meyer-Lindenberg,
| |
Collapse
|
4
|
Bobe K, Willbold E, Haupt M, Reebmann M, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, Tillmann W, Vogt C, Vano-Herrera K, Witte F. Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation. Acta Biomater 2022; 148:389-404. [PMID: 35691561 DOI: 10.1016/j.actbio.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Open-porous scaffolds made of W4 and WZ21 fibres were evaluated to analyse their potential as an implant material. WZ21 scaffolds without any surface modification or coating, showed promising mechanical properties which were comparable to the W4 scaffolds tested in previous studies. Eudiometric testing results were dependent on the experimental setup, with corrosion rates differing by a factor of 3. Cytotoxicity testing of WZ21 showed sufficient cytocompatibility. The corrosion behavior of the WZ21 scaffolds in different cell culture media are indicating a selective dealloying of elements from the magnesium scaffold by different solutions. Long term in-vivo studies were using 24 W4 scaffolds and 12 WZ21 scaffolds, both implanted in rabbit femoral condyles. The condyles and important inner organs were explanted after 6, 12 and 24 weeks and analyzed. The in-vivo corrosion rate of the WZ21 scaffolds calculated by microCT-based volume loss was up to 49 times slower than the in-vitro corrosion rate based on weight loss. Intramembranous bone formation within the scaffolds of both alloys was revealed, however a low corrosion rate and formation of gas cavities at initial time points were also detected. No systemic or local toxicity could be observed. Investigations by μ-XRF did not reveal accumulation of yttrium in the neighboring tissue. In summary, the magnesium scaffold´s performance is biocompatible, but would benefit from a surface modification, such as a coating to obtain lower the initial corrosion rates, and hereby establish a promising open-porous implant material for load-bearing applications. STATEMENT OF SIGNIFICANCE: Magnesium is an ideal temporary implant material for non-load bearing applications like bigger bone defects, since it degrades in the body over time. Here we developed and tested in vitro and in a rabbit model in vivo degradable open porous scaffolds made of sintered magnesium W4 and WZ21 short fibres. These scaffolds allow the ingrowth of cells and blood vessels to promote bone healing and regeneration. Both fibre types showed in vitro sufficient cytocompatibility and proliferation rates and in vivo, no systemic toxicity could be detected. At the implantation site, intramembranous bone formation accompanied by ingrowth of supplying blood vessels within the scaffolds of both alloys could be detected.
Collapse
Affiliation(s)
- Katharina Bobe
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, Hannover 30625, Germany
| | - Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, Hannover 30625, Germany.
| | - Maike Haupt
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, Hannover 30625, Germany
| | - Mattias Reebmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, Hannover 30625, Germany
| | - Ingrid Morgenthal
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, Dresden 01277, Germany
| | - Olaf Andersen
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, Dresden 01277, Germany
| | - Thomas Studnitzky
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, Dresden 01277, Germany
| | - Jens Nellesen
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, Dortmund 44227, Germany
| | - Wolfgang Tillmann
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, Dortmund 44227, Germany
| | - Carla Vogt
- Institute for Analytical Chemistry, University of Mining and Technology, Leipziger Straße 29, Freiberg 09599, Germany
| | - Kelim Vano-Herrera
- Deutsches Institut für Kautschuktechnologie, Eupener Straße 33, Hannover 30519, Germany
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Dental Materials and Biomaterial Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, Berlin 14197, Germany
| |
Collapse
|
5
|
Schmidt M, Waselau AC, Feichtner F, Julmi S, Klose C, Maier HJ, Wriggers P, Meyer-Lindenberg A. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater 2022; 20:22808000221142679. [PMID: 36545893 DOI: 10.1177/22808000221142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
Collapse
Affiliation(s)
- Marlene Schmidt
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|