1
|
Wu Y, Kong W, Van Stappen J, Kong L, Huang Z, Yang Z, Kuo YA, Chen YI, He Y, Yeh HC, Lu T, Lu Y. Genetically Encoded Fluorogenic DNA Aptamers for Imaging Metabolite in Living Cells. J Am Chem Soc 2024. [PMID: 39739942 DOI: 10.1021/jacs.4c09855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Genetically encoded fluorescent protein and fluorogenic RNA sensors are indispensable tools for imaging biomolecules in cells. To expand the toolboxes and improve the generalizability and stability of this type of sensor, we report herein a genetically encoded fluorogenic DNA aptamer (GEFDA) sensor by linking a fluorogenic DNA aptamer for dimethylindole red with an ATP aptamer. The design enhances red fluorescence by 4-fold at 650 nm in the presence of ATP. Additionally, upon dimerization, it improves the signal-to-noise ratio by 2-3 folds. We further integrated the design into a plasmid to create a GEFDA sensor for sensing ATP in live bacterial and mammalian cells. This work expanded genetically encoded sensors by employing fluorogenic DNA aptamers, which offer enhanced stability over fluorogenic proteins and RNAs, providing a novel tool for real-time monitoring of an even broader range of small molecular metabolites in biological systems.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jacqueline Van Stappen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhimei Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Jaeger S, Lanquaye H, Dwivedi SK, Arachchige DL, Xia J, Waters M, Bigari BL, Olowolagba AM, Agyemang P, Zhang Y, Zhang Y, Ata A, Kathuria I, Luck RL, Werner T, Liu H. Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Drosophila melanogaster Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe. ACS APPLIED BIO MATERIALS 2024; 7:8465-8478. [PMID: 39562316 DOI: 10.1021/acsabm.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A near-infrared fluorescent probe, A, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe AH, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe AH. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved Drosophila melanogaster larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.
Collapse
Affiliation(s)
- Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James Xia
- Woodbury high school, 2665 Woodlane Drive, Woodbury, Minnesota 55125, United States
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bella Lyn Bigari
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ishana Kathuria
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Olowolagba AM, Idowu MO, Arachchige DL, Aworinde OR, Dwivedi SK, Graham OR, Werner T, Luck RL, Liu H. Syntheses and Applications of Coumarin-Derived Fluorescent Probes for Real-Time Monitoring of NAD(P)H Dynamics in Living Cells across Diverse Chemical Environments. ACS APPLIED BIO MATERIALS 2024; 7:5437-5451. [PMID: 38995885 PMCID: PMC11333170 DOI: 10.1021/acsabm.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
4
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
5
|
Hu X, Zhang D, Huang L, Zeng Z, Su Y, Chen S, Lin X, Hong S. Construction of a Functional Nucleic Acid-Based Artificial Vesicle-Encapsulated Composite Nanoparticle and Its Application in Retinoblastoma-Targeted Theranostics. ACS Biomater Sci Eng 2024; 10:1830-1842. [PMID: 38408449 DOI: 10.1021/acsbiomaterials.3c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Retinoblastoma (RB) is an aggressive tumor of the infant retina. However, the ineffective targeting of its theranostic agents results in poor imaging and therapeutic efficacy, which makes it difficult to identify and treat RB at an early stage. In order to improve the imaging and therapeutic efficacy, we constructed an RB-targeted artificial vesicle composite nanoparticle. In this study, the MnO2 nanosponge (hMNs) was used as the core to absorb two fluorophore-modified DNAzymes to form the Dual/hMNs nanoparticle; after loaded with the artificial vesicle derived from human red blood cells, the RB-targeted DNA aptamers were modified on the surface, thus forming the Apt-EG@Dual/hMNs complex nanoparticle. The DNA aptamer endows this nanoparticle to target the nucleolin-overexpressed RB cell membrane specifically and enters cells via endocytosis. The nanoparticle could release fluorophore-modified DNAzymes and supplies Mn2+ as a DNAzyme cofactor and a magnetic resonance imaging (MRI) agent. Subsequently, the DNAzymes can target two different mRNAs, thereby realizing fluorescence/MR bimodal imaging and dual-gene therapy. This study is expected to provide a reliable and valuable basis for ocular tumor theranostics.
Collapse
Affiliation(s)
- Xueqi Hu
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Shanshan Chen
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| |
Collapse
|
6
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
7
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
8
|
Bozic T, Markelc B. Imaging of Extravasation of Splenocytes in the Dorsal Skinfold Window Chamber. Methods Mol Biol 2024; 2773:137-155. [PMID: 38236543 DOI: 10.1007/978-1-0716-3714-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Infiltration of immune cells into the tumor is one of the major drivers of antitumor immune response, which can direct the outcome of anticancer therapies. In mice, implantation of dorsal skinfold window chamber (DSWC) combined with intravital confocal fluorescence microscopy allows real-time observation of splenocyte extravasation and infiltration into tumors. Here, we describe a detailed procedure of the DSWC implantation, splenocyte isolation and fluorescent labeling, intravenous injection of labeled splenocytes, and imaging of splenocyte extravasation into tumors using confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Si D, Li Q, Bao Y, Zhang J, Wang L. Fluorogenic and Cell-Permeable Rhodamine Dyes for High-Contrast Live-Cell Protein Labeling in Bioimaging and Biosensing. Angew Chem Int Ed Engl 2023; 62:e202307641. [PMID: 37483077 DOI: 10.1002/anie.202307641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.
Collapse
Affiliation(s)
- Dongjuan Si
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Quanlin Li
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Yifan Bao
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Jingye Zhang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Lu Wang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| |
Collapse
|
10
|
Arachchige DL, Dwivedi SK, Jaeger S, Olowolagba AM, Mahmoud M, Tucker DR, Fritz DR, Werner T, Tanasova M, Luck RL, Liu H. Highly Sensitive Cyanine Dyes for Rapid Sensing of NAD(P)H in Mitochondria and First-Instar Larvae of Drosophila melanogaster. ACS APPLIED BIO MATERIALS 2023; 6:3199-3212. [PMID: 37556116 PMCID: PMC10584401 DOI: 10.1021/acsabm.3c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed two highly sensitive cyanine dyes, which we refer to as probes A and B. These dyes are capable of quick and sensitive sensing of NAD(P)H. The dyes were fabricated by connecting benzothiazolium and 2,3-dimethylnaphtho[1,2-d]thiazol-3-ium units to 3-quinolinium through a vinyl bond. In the absence of NAD(P)H, both probes have low fluorescence and absorption peaks at 370 and 400 nm, correspondingly. This is because of their two electron-withdrawing acceptor systems with high charge densities. However, when NAD(P)H reduces the probes' electron-withdrawing 3-quinolinium units to electron-donating 1,4-dihydroquinoline units, the probes absorb at 533 and 535 nm and fluoresce at 572 and 586 nm for A and B correspondingly. This creates well-defined donor-π-acceptor cyanine dyes. We successfully used probe A to monitor NAD(P)H levels in live cells during glycolysis, under hypoxic conditions induced by CoCl2 treatment and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine. Probe A was also employed to visualize NAD(P)H in Drosophila melanogaster first-instar larvae. We observed an increase in NAD(P)H levels in A549 cancer cells both under hypoxic conditions and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
11
|
Zhao J, Tang C, Zhang K, Li X, Dai C, Gu B. Construction of a novel ESIPT and AIE-based fluorescent sensor for sequentially detecting Cu 2+ and H 2S in both living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122951. [PMID: 37270973 DOI: 10.1016/j.saa.2023.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The development of effective methods for tracking Cu2+ and H2S in living organisms is urgently required due to their vital function in a variety of pathophysiological processes. In this work, a new fluorescent sensor BDF with excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) features for the successive detection of Cu2+ and H2S was constructed by introducing 3,5-bis(trifluoromethyl)phenylacetonitrile into the benzothiazole skeleton. BDF showed a fast, selective and sensitive fluorescence "turn off" response to Cu2+ in physiological media, and the situ-formed complex can serve as a fluorescence "turn on" sensor for highly selective detection of H2S through the Cu2+ displacement approach. In addition, the detection limits of BDF for Cu2+ and H2S were determined to be 0.05 and 1.95 μM, respectively. Encouraged by its favourable features, including strong red fluorescence from the AIE effect, large Stokes shift (285 nm), high anti-interference ability and good function at physiological pH as well as a low toxicity, BDF was successfully applied for the consequent imaging of Cu2+ and H2S in both living cells and zebrafish, making it an ideal candidate for detecting and imaging of Cu2+ and H2S in live systems.
Collapse
Affiliation(s)
- Jingjun Zhao
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Can Tang
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Keyang Zhang
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Xinyu Li
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Cong Dai
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Biao Gu
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China.
| |
Collapse
|
12
|
Wang Q, Zhang Q, Zhang Z, Ji M, Du T, Jin J, Jiang JD, Chen X, Hu HY. Characterization of Chlorogenic Acid as a Two-Photon Fluorogenic Probe that Regulates Glycolysis in Tumor Cells under Hypoxia. J Med Chem 2023; 66:2498-2505. [PMID: 36745976 DOI: 10.1021/acs.jmedchem.2c01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High levels of steady-state mitochondrial reactive oxygen species (ROS) and glycolysis are hallmarks of cancer. An improved understanding of interactions between tumor energetics and mitochondrial ROS modulation is useful for the development of new anticancer strategies. Here, we show that the natural product chlorogenic acid (CGA) specifically scavenged abnormally elevated mitochondrial O2•- and exhibited a two-photon fluorescence turn-on response to tumor cells under hypoxia and tumor tissues in vivo. Furthermore, we illustrated that CGA treatment reduced O2•- levels in cells, hampered activation of AMP-activated protein kinase (AMPK), and shifted metabolism from glycolysis to oxidative phosphorylation (OXPHOS), resulting in inhibition of tumor growth under hypoxia. This study demonstrates an efficient two-photon fluorescent tool for real-time assessment of mitochondrial O2•- and a clear link between reducing intracellular ROS levels by CGA treatments and regulating metabolism, as well as undeniably helpful insights for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111937. [PMID: 36431072 PMCID: PMC9695321 DOI: 10.3390/life12111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies. They have the potential to detect various cancer-associated biomarkers. For cancer therapeutic purposes, aptamers can serve as therapeutic or delivery agents. The chemical stabilization and modification strategies for aptamers may expand their serum half-life and shelf life. However, aptamer-based probes for cancer diagnosis and therapy still face several challenges for successful clinical translation. A deeper understanding of nucleic acid chemistry, tissue distribution, and pharmacokinetics is required in the development of aptamer-based probes. This review summarizes their application in cancer diagnostics and treatments based on different localization of target biomarkers, as well as current challenges and future prospects.
Collapse
|
14
|
Zhang Y, Pei R. Editorial: Special issue on advances in nanomedicine. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac8fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Nanomaterials are being increasingly used to develop new methods of disease diagnosis and treatment, thereby providing novel paradigms to break through the current limitations of medicine. However, there is still a long way toward the complete revolution for nanomedicine in the diagnosis and treatment of diseases. As nanoparticles are highly complex products and difficult to characterize, there are still many challenges. This special issue on Advances in Nanomedicine includes a series of topical reviews and original research articles that highlight the recent advances in diagnosis and therapy of nanomaterials.
Collapse
|
15
|
Advances in measuring cancer cell metabolism with subcellular resolution. Nat Methods 2022; 19:1048-1063. [PMID: 36008629 DOI: 10.1038/s41592-022-01572-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Characterizing metabolism in cancer is crucial for understanding tumor biology and for developing potential therapies. Although most metabolic investigations analyze averaged metabolite levels from all cell compartments, subcellular metabolomics can provide more detailed insight into the biochemical processes associated with the disease. Methodological limitations have historically prevented the wider application of subcellular metabolomics in cancer research. Recently, however, ways to distinguish and identify metabolic pathways within organelles have been developed, including state-of-the-art methods to monitor metabolism in situ (such as mass spectrometry-based imaging, Raman spectroscopy and fluorescence microscopy), to isolate key organelles via new approaches and to use tailored isotope-tracing strategies. Herein, we examine the advantages and limitations of these developments and look to the future of this field of research.
Collapse
|
16
|
Lin WH, Jacobs-Wagner C. Connecting single-cell ATP dynamics to overflow metabolism, cell growth, and the cell cycle in Escherichia coli. Curr Biol 2022; 32:3911-3924.e4. [PMID: 35961315 DOI: 10.1016/j.cub.2022.07.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Adenosine triphosphate (ATP) is an abundant and essential metabolite that cells consume and regenerate in large amounts to support growth. Although numerous studies have inferred the intracellular concentration of ATP in bacterial cultures, what happens in individual bacterial cells under stable growth conditions is less clear. Here, we use the QUEEN-2m biosensor to quantify ATP dynamics in single Escherichia coli cells in relation to their growth rate, metabolism, cell cycle, and cell lineage. We find that ATP dynamics are more complex than expected from population studies and are associated with growth-rate variability. Under stable nutrient-rich condition, cells can display large fluctuations in ATP level that are partially coordinated with the cell cycle. Abrogation of aerobic acetate fermentation (overflow metabolism) through genetic deletion considerably reduces both the amplitude of ATP level fluctuations and the cell-cycle trend. Similarly, growth in media in which acetate fermentation is lower or absent results in the reduction of ATP level fluctuation and cell-cycle trend. This suggests that overflow metabolism exhibits temporal dynamics, which contributes to fluctuating ATP levels during growth. Remarkably, at the single-cell level, growth rate negatively correlates with the amplitude of ATP fluctuation for each tested condition, linking ATP dynamics to growth-rate heterogeneity in clonal populations. Our work highlights the importance of single-cell analysis in studying metabolism and its implication to phenotypic diversity and cell growth.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA; Chemistry, Engineering, Medicine for Human Health Institute, Stanford University, Palo Alto, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA; Chemistry, Engineering, Medicine for Human Health Institute, Stanford University, Palo Alto, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
17
|
Tsai HY, Algar WR. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS NANO 2022; 16:8150-8160. [PMID: 35499916 DOI: 10.1021/acsnano.2c01473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is widely used for the development of biological probes and sensors. In this context, the norm for multiplexed detection is deployment of multiple probes, each a discrete donor-acceptor pair. Concentric FRET (cFRET) probes enable multiplexed sensing with a single vector but, to date, have only been developed around semiconductor quantum dots, which may limit the scope of biological applications for such probes. Here, we demonstrate that dendrimers labeled with a luminescent terbium complex (Tb) are a viable and advantageous alternative platform for cFRET probes. Polyamidoamine dendrimers were functionalized with Tb, biotin, NeutrAvidin, and three types of dye-labeled oligonucleotide probes to establish a network of competitive and sequential Tb-to-dye and dye-to-dye FRET pathways. These probes were characterized physically and photophysically, and a time-gated multiplexed assay for DNA targets was demonstrated. The time-gating offered by the Tb allowed the rejection of background autofluorescence from serum. More broadly, this dendrimer-based architecture shows that cFRET is a general concept and is an important step toward a new generation of probes for biological sensing.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
18
|
Wardman P. Approaches to modeling chemical reaction pathways in radiobiology. Int J Radiat Biol 2022; 98:1399-1413. [DOI: 10.1080/09553002.2022.2033342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Wardman
- 20 Highover Park, Amersham, Buckinghamshire HP7 0BN, United Kingdom
| |
Collapse
|