1
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
2
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Mungenast L, Nieminen R, Gaiser C, Faia-Torres AB, Rühe J, Suter-Dick L. Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100081. [PMID: 37427248 PMCID: PMC10329103 DOI: 10.1016/j.bbiosy.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Traumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ronya Nieminen
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Carine Gaiser
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg 79110, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
- SCAHT: Swiss Centre for Applied Human Toxicology, Missionsstrasse 64, Basel 4055, Switzerland
| |
Collapse
|
4
|
Liu D, Lu G, Shi B, Ni H, Wang J, Qiu Y, Yang L, Zhu Z, Yi X, Du X, Shi B. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Adv Healthc Mater 2023; 12:e2300123. [PMID: 36989238 DOI: 10.1002/adhm.202300123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Although stem cell-based therapy is recognized as a promising therapeutic strategy for spinal cord injury (SCI), its efficacy is greatly limited by local reactive oxygen species (ROS)-abundant and hyper-inflammatory microenvironments. It is still a challenge to develop bioactive scaffolds with outstanding antioxidant capacity for neural stem cells (NSCs) transplantation. In this study, albumin biomimetic cerium oxide nanoparticles (CeO2 @BSA nanoparticles, CeNPs) are prepared in a simple and efficient manner and dispersed in gelatin methacryloyl to obtain the ROS-scavenging hydrogel (CeNP-Gel). CeNP-Gel synergistically promotes neurogenesis via alleviating oxidative stress microenvironments and improving the viability of encapsulated NSCs. More interestingly, in the presence of CeNP-Gel, microglial polarization to anti-inflammatory M2 subtype are obviously facilitated, which is further verified to be associated with phosphoinositide 3-kinase/protein kinase B pathway activation. Additionally, the injectable ROS-scavenging hydrogel is confirmed to induce the integration and neural differentiation of transplanted NSCs. Compared with the blank-gel group, the survival rate of NSCs in CeNP-Gel group is about 3.5 times higher, and the neural differentiation efficiency is about 2.1 times higher. Therefore, the NSCs-laden ROS-scavenging hydrogel represents a comprehensive strategy with great application prospect for the treatment of SCI through comprehensively modulating the adverse microenvironment.
Collapse
Affiliation(s)
- Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Bo Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 210037, P. R. China
| | - Xiao Du
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| |
Collapse
|
5
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Mou C, Wang X, Li W, Li Z, Liu N, Xu Y. Efficacy of mesenchymal stromal cells intraspinal transplantation for patients with different degrees of spinal cord injury: A systematic review and meta-analysis. Cytotherapy 2023; 25:530-536. [PMID: 36805381 DOI: 10.1016/j.jcyt.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AIMS Several studies have reported that mesenchymal stromal cells (MSCs) may improve neurological functions in patients with spinal cord injury (SCI). In this study, we conducted a systematic review and meta-analysis to summarize the effects of MSC treatment on different degrees of severity of SCI. METHODS Systematic searching of studies reporting outcomes of MSCs on specific injury severities of patients with SCI was performed in The National Library of Medicine (MEDLINE), Embase and Cochrane for published articles up to the 6 July 2022. Two investigators independently reviewed the included studies and extracted the relevant data. The standardized mean differences of American Spinal Injury Association (ASIA) motor score, ASIA light touch scores, ASIA pinprick scores and the Barthel index between baseline and follow-ups were pooled. RESULTS A total of eight studies were included. A large majority focused on patients with ASIA grade A classification. The pooled mean differences of ASIA motor scores, ASIA light touch scores, ASIA pinprick scores and the Barthel index were -2.78 (95% confidence interval [CI] -5.12 to -0.43, P = 0.02), -18.26 (95% CI -26.09 to -10.43, P < 0.01), -17.08 (95% CI -24.10 to -10.07, P < 0.01) and -4.37 (95% CI -10.96 to 2.22, P = 0.19), respectively. CONCLUSIONS MSC transplantation was a significantly effective therapy for patients with SCI with ASIA grade A. In the future, further studies are warranted to confirm the potential beneficial effects of MSC therapy.
Collapse
Affiliation(s)
- Chunlin Mou
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China
| | - Xiujuan Wang
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China
| | - Wei Li
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China
| | - Zhengnan Li
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China
| | - Nian Liu
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China
| | - Yongsheng Xu
- Technology Department, Everunion Biotechnology Co. Ltd., Tianjin, China.
| |
Collapse
|
7
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
8
|
Xia Y, Yang R, Wang H, Hou Y, Li Y, Zhu J, Xu F, Fu C. Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes. J Tissue Eng 2022; 13:20417314221143059. [PMID: 36600997 PMCID: PMC9806413 DOI: 10.1177/20417314221143059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) causes tremendous harm to a patient's physical, mental, and financial health. Moreover, recovery of SCI is affected by many factors, inflammation is one of the most important as it engulfs necrotic tissue and cells during the early stages of injury. However, excessive inflammation is not conducive to damage repair. Macrophages are classified into either blood-derived macrophages or resident microglia based on their origin, their effects on SCI being two-sided. Microglia first activate and recruit blood-derived macrophages at the site of injury-blood-borne macrophages being divided into pro-inflammatory M1 phenotypes and anti-inflammatory M2 phenotypes. Among them, M1 macrophages secrete inflammatory factors such as interleukin-β (IL-β), tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ) at the injury site, which aggravates SCIs. M2 macrophages secrete IL-4, IL-10, IL-13, and neurotrophic factors to inhibit the inflammatory response and inhibit neuronal apoptosis. Consequently, modulating phenotypic differentiation of macrophages appears to be a meaningful therapeutic target for the treatment of SCI. Biomaterials are widely used in regenerative medicine and tissue engineering due to their targeting and bio-histocompatibility. In this review, we describe the effects of biomaterials applied to modulate macrophage phenotypes on SCI recovery and provide an outlook.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Ruohan Yang
- Cancer Center, The First Hospital of
Jilin University, Changchun, PR China
| | - Hengyi Wang
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Yulin Hou
- Depattment of Cardiology, Guangyuan
Central Hospital, Guangyuan, PR China
| | - Yuehong Li
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Feng Xu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Changfeng Fu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China,Changfeng Fu, Department of Spine Surgery,
The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR
China.
| |
Collapse
|
9
|
Yin Z, Yin J, Huo Y, Gu G, Yu J, Li A, Tang J. KCC2 overexpressed exosomes meditated spinal cord injury recovery in mice. Biomed Mater 2022; 17. [PMID: 36263707 DOI: 10.1088/1748-605x/ac956b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Exosomes show great potential in treating diseases of the central nervous system including spinal cord injury (SCI), still better engineered exosomes have more advantages. In this study, we purified exosomes from K+-Cl-co-transporter (KCC2) overexpressed bone marrow mesenchymal stem cells (ExoKCC2), to investigate the effect of ExoKCC2on neural differentiationin vitroand the repairing function of ExoKCC2in SCI micein vivo. Compared to bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exo), ExoKCC2could better promote neural stem cell differentiated into neurons, ameliorate the function recovery of SCI mice, and accelerate the neural regeneration at the lesion site. Altogether, engineered ExoKCC2may prove to be an advantageous strategy for SCI treatment.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongfeng Huo
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Guangxue Gu
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jian Yu
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Aimin Li
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Jinhai Tang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Agarwal G, Roy A, Kumar H, Srivastava A. Graphene-collagen cryogel controls neuroinflammation and fosters accelerated axonal regeneration in spinal cord injury. BIOMATERIALS ADVANCES 2022; 139:212971. [PMID: 35882128 DOI: 10.1016/j.bioadv.2022.212971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like β-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.
Collapse
Affiliation(s)
- Gopal Agarwal
- Department of Biotechnology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| |
Collapse
|
11
|
Ren J, Tang X, Wang T, Wei X, Zhang J, Lu L, Liu Y, Yang B. A Dual-Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Long-Term High-Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Adv Healthc Mater 2022; 11:e2200183. [PMID: 35306758 DOI: 10.1002/adhm.202200183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing is considered a crucial technique to assess the axonal regeneration level after injury, but traditional tracers do not meet the needs of in vivo neural tracing in deep tissues. Magnetic resonance (MR) and photoacoustic (PA) imaging have high spatial resolution, great penetration depth, and rich contrast. Fe3 O4 nanoparticles may work well as a dual-modal diagnosis probe for neural tracers, with the potential to improve nerve regeneration. The present study combines antegrade neural tracing imaging therapy for the peripheral nervous system. Fe3 O4 @COOH nanoparticles are successfully conjugated with biotinylated dextran amine (BDA) to produce antegrade nano-neural tracers, which are encapsulated by microfluidic droplets to control leakage and allow sustained, slow release. They have many notable advantages over traditional tracers, including dual-modal real-time MR/PA imaging in vivo, long-duration release effect, and limitation of uncontrolled leakage. These multifunctional anterograde neural tracers have potential neurotherapeutic function, are reliable and may be used as a new platform for peripheral nerve injury imaging and treatment integration.
Collapse
Affiliation(s)
- Jingyan Ren
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiaoduo Tang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Tao Wang
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xin Wei
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Junhu Zhang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Laijin Lu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Yang Liu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Bai Yang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
12
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|