1
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
2
|
Tian F, Yin L, Lin P, Liu Y, Wang W, Chen Y, Tang Y. Aligned Nanofibrous Net Deposited Perpendicularly on Microridges Supports Endothelium Formation and Promotes the Structural Maturation of hiPSC-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17518-17531. [PMID: 36992621 DOI: 10.1021/acsami.2c22551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cell alignment widely exists in various in vivo tissues and also plays an essential role in the construction of in vitro models, such as vascular endothelial and myocardial models. Recently, microscale and nanoscale hierarchical topographical structures have been drawing increasing attention for engineering in vitro cell alignment. In the present study, we fabricated a micro-/nanohierarchical substrate based on soft lithography and electrospinning to assess the synergetic effect of both the aligned nanofibrous topographical guidance and the off-ground culture environment provided by the substrate on the endothelium formation and the maturation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The morphology, proliferation, and barrier formation of human umbilical vein endothelial cells (HUVECs) as well as the alignment, cardiac-specific proteins, and maturity-related gene expression of hiPSC-CMs on the aligned-nanofiber/microridge (AN-MR) substrate were studied. Compared with the glass slide and the single-aligned nanofiber substrate, the AN-MR substrate enhanced the proliferation, alignment, and cell-cell interaction of HUVECs and improved the length of the sarcomere and maturation-related gene expression of hiPSC-CMs. Finally, the response of hiPSC-CMs on different substrates to two typical cardiac drugs (isoproterenol and E-4031) was tested and analyzed, showing that the hiPSC-CMs on AN-MR substrates were more resistant to drugs than those in other groups, which was related to the higher maturity of the cells. Overall, the proposed micro-/nanohierarchical substrate supports the in vitro endothelium formation and enhances the maturation of hiPSC-CMs, which show great potential to be applied in the construction of in vitro models and tissue engineering.
Collapse
Affiliation(s)
- Feng Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linlin Yin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, Paris 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
A Three-Dimensional Engineered Cardiac In Vitro Model: Controlled Alignment of Cardiomyocytes in 3D Microphysiological Systems. Cells 2023; 12:cells12040576. [PMID: 36831243 PMCID: PMC9954012 DOI: 10.3390/cells12040576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyocyte alignment in myocardium tissue plays a significant role in the physiological, electrical, and mechanical functions of the myocardium. It remains, however, difficult to align cardiac cells in a 3D in vitro heart model. This paper proposes a simple method to align cells using microfabricated Polydimethylsiloxane (PDMS) grooves with large dimensions (of up to 350 µm in width), similar to the dimensions of trabeculae carneae, the smallest functional unit of the myocardium. Two cell groups were used in this work; first, H9c2 cells in combination with Nor10 cells for proof of concept, and second, neonatal cardiac cells to investigate the functionality of the 3D model. This model compared the patterned and nonpatterned 3D constructs, as well as the 2D cell cultures, with and without patterns. In addition to alignment, we assessed the functionality of our proposed 3D model by comparing beating rates between aligned and non-aligned structures. In order to assess the practicality of the model, the 3D aligned structures should be demonstrated to be detachable and alignable. This evaluation is crucial to the use of this 3D functional model in future studies related to drug screening, building blocks for tissue engineering, and as a heart-on-chip by integrating microfluidics.
Collapse
|
4
|
Moxon SR, Richards D, Dobre O, Wong LS, Swift J, Richardson SM. Regulation of Mesenchymal Stem Cell Morphology Using Hydrogel Substrates with Tunable Topography and Photoswitchable Stiffness. Polymers (Basel) 2022; 14:polym14245338. [PMID: 36559706 PMCID: PMC9788018 DOI: 10.3390/polym14245338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cell function can be directly influenced by the mechanical and structural properties of the extracellular environment. In particular, cell morphology and phenotype can be regulated via the modulation of both the stiffness and surface topography of cell culture substrates. Previous studies have highlighted the ability to design cell culture substrates to optimise cell function. Many such examples, however, employ photo-crosslinkable polymers with a terminal stiffness or surface profile. This study presents a system of polyacrylamide hydrogels, where the surface topography can be tailored and the matrix stiffness can be altered in situ with photoirradiation. The process allows for the temporal regulation of the extracellular environment. Specifically, the surface topography can be tailored via reticulation parameters to include creased features with control over the periodicity, length and branching. The matrix stiffness can also be dynamically tuned via exposure to an appropriate dosage and wavelength of light, thus, allowing for the temporal regulation of the extracellular environment. When cultured on the surface of the hydrogels, the morphology and alignment of immortalised human mesenchymal stem cells can be directly influenced through the tailoring of surface creases, while cell size can be altered via changes in matrix stiffness. This system offers a new platform to study cellular mechanosensing and the influence of extracellular cues on cell phenotype and function.
Collapse
Affiliation(s)
- Samuel R. Moxon
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- The Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - David Richards
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Oana Dobre
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow G12 8LT, UK
| | - Lu Shin Wong
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| | - Joe Swift
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| |
Collapse
|
5
|
Li S, Yoshioka M, Li J, Liu L, Ye S, Kamei KI, Chen Y. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomed Mater 2022; 17. [PMID: 35114658 DOI: 10.1088/1748-605x/ac51b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the utility of the method. The results are also compared with those obtained using electrospun nanofiber substrates. Inherently, the PDMS replicas is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Collapse
Affiliation(s)
- Sisi Li
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, Paris, Île-de-France, 75230, FRANCE
| | - Momoko Yoshioka
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Li Liu
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Sixin Ye
- University of Paris, 94276 Le Kremlin Bicêtre, Paris, 75006, FRANCE
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Yong Chen
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05, Paris, Île-de-France, 75230, FRANCE
| |
Collapse
|