1
|
Katrilaka C, Karipidou N, Petrou N, Manglaris C, Katrilakas G, Tzavellas AN, Pitou M, Tsiridis EE, Choli-Papadopoulou T, Aggeli A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4425. [PMID: 37374608 DOI: 10.3390/ma16124425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
This paper presents a systematic review of a key sector of the much promising and rapidly evolving field of biomedical engineering, specifically on the fabrication of three-dimensional open, porous collagen-based medical devices, using the prominent freeze-drying process. Collagen and its derivatives are the most popular biopolymers in this field, as they constitute the main components of the extracellular matrix, and therefore exhibit desirable properties, such as biocompatibility and biodegradability, for in vivo applications. For this reason, freeze-dried collagen-based sponges with a wide variety of attributes can be produced and have already led to a wide range of successful commercial medical devices, chiefly for dental, orthopedic, hemostatic, and neuronal applications. However, collagen sponges display some vulnerabilities in other key properties, such as low mechanical strength and poor control of their internal architecture, and therefore many studies focus on the settlement of these defects, either by tampering with the steps of the freeze-drying process or by combining collagen with other additives. Furthermore, freeze drying is still considered a high-cost and time-consuming process that is often used in a non-optimized manner. By applying an interdisciplinary approach and combining advances in other technological fields, such as in statistical analysis, implementing the Design of Experiments, and Artificial Intelligence, the opportunity arises to further evolve this process in a sustainable and strategic manner, and optimize the resulting products as well as create new opportunities in this field.
Collapse
Affiliation(s)
- Chrysoula Katrilaka
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Niki Karipidou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nestor Petrou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chris Manglaris
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - George Katrilakas
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Anastasios Nektarios Tzavellas
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Pitou
- School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleftherios E Tsiridis
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | - Amalia Aggeli
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Singh YP, Mishra B, Gupta MK, Bhaskar R, Han SS, Mishra NC, Dasgupta S. Gelatin/monetite electrospun scaffolds to regenerate bone tissue: Fabrication, characterization, and in-vitro evaluation. J Mech Behav Biomed Mater 2023; 137:105524. [PMID: 36332397 DOI: 10.1016/j.jmbbm.2022.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022]
Abstract
This work is dedicated to combining nanotechnology with bone tissue engineering to prepare and characterize electrospun gelatin/monetite nanofibrous scaffold with improved physicochemical, mechanical, and biological properties. Nanofibrous scaffolds possessing fiber diameter in the range of 242-290 nm were prepared after incorporating varying content of monetite nanoparticles up to 7 wt % into the gelatin matrix using the electrospinning technique. Cross-linking of gelatin chains in the scaffold was performed using 0.25 wt% glutaraldehyde as indicated by imine (-CN-) bond formation in the FTIR analysis. With an increase in monetite addition up to 7 wt%, a decrease in swelling ratio and bio-degradability of cross-linked gelatin scaffolds was observed. Gelatin scaffold with 7 wt% monetite content registered the highest values of tensile strength and tensile modulus of 18.8 MPa and 170 MPa, as compared to 0% and 5 wt% monetite containing scaffolds respectively. Cell viability and differentiation were studied after culturing MG-63 cells onto the scaffolds from confocal microscopy of live and dead cells images, MTT assay, and alkaline phosphatase assay for a cell culture period of up to 21 days. It was observed that 7 wt % monetite containing gelatin scaffold exhibited better MG-63 cell adhesion, proliferation, higher biomineralization, and ALP activity compared to 0% and 5 wt% monetite containing electrospun scaffolds studied here.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Narayan Chandra Mishra
- Department of Polymer & Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Uttar Pradesh, 247001, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Bhushan S, Singh S, Maiti TK, Sharma C, Dutt D, Sharma S, Li C, Tag Eldin EM. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering (Basel) 2022; 9:728. [PMID: 36550933 PMCID: PMC9774188 DOI: 10.3390/bioengineering9120728] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Chhavi Sharma
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changhe Li
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | |
Collapse
|
4
|
Sanjaya GPH, Maliawan S. Chitosan as Bone Scaffold for Craniofacial Bone Regeneration: A Systematic Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The reconstruction of bone defect in the face and head is indispensable yet one of the most challenging procedure to date. Chitosan has emerged as a promising low-cost natural biopolymer for the bone scaffold as an alternative to surgery. This study aims to review the effectiveness of chitosan as a bone scaffold for craniofacial bone regeneration.
Methods: This systematic review used Google Scholar and PubMed as database sources. Study selection using PRISMA diagram and Boolean operator to specify the study search. The quality assessment of the study used a checklist from Joanna Briggs Institute for experimental study.
Result: We included 18 experimental studies, both in vivo and in vitro study—the in vivo study used animal subjects such as mice, goats and rabbits. The studies mostly used chitosan combined with other biomaterials such as demineralized bone matrix (DBM), genipin (GP), sodium alginate (SA), resveratrol (Res), polycaprolactone (PCL) and collagen, growth factor and stem cells such as bone morphogenic protein-2 (BMP-2), dental pulp stem cell (DPSC), and human umbilical cord mesenchymal stem cells (hUCMSC).
Conclusion: Chitosan is a natural polymer with promising osteoconductive, osteoinductive and osteo-integrative effects in bone regeneration. Chitosan utilization for bone scaffolds combined with other biomaterials, growth factors, or stem cells gives better bone regeneration results than chitosan alone.
Collapse
|
5
|
Singh YP, Mishra B, Gupta MK, Mishra NC, Dasgupta S. Enhancing physicochemical, mechanical, and bioactive performances of monetite nanoparticles reinforced
chitosan‐PEO
electrospun scaffold for bone tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering Indian Institute of Technology (IIT) Roorkee India
| | - Sudip Dasgupta
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
| |
Collapse
|
6
|
Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Singh YP, Bhaskar R, Agrawal AK, Dasgupta S. Effect of monetite reinforced into the chitosan-based lyophilized 3D scaffolds on physicochemical, mechanical, and osteogenic properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
- Department of Nano, Medical & Polymer Materials, Yeungnam University, South Korea
| | | | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
8
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
9
|
Najafinezhad A, Bakhsheshi Rad HR, Saberi A, Nourbakhsh AA, Daroonparvar M, Ismail AF, Sharif S, Dai Y, Ramakrishna S, Berto F. Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomed Mater 2022; 17. [PMID: 35358956 DOI: 10.1088/1748-605x/ac62e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds' biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 76-78% with pore size of 300-450 μm. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1wt.% GO scaffold (2.4±0.1 MPa) was significantly increased, in comparison to forsterite scaffolds without GO (1.4±0.1 MPa). Validation of the samples' bioactivity was attained by forming a hydroxyapatite (HAp) layer on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration from 0.5 to 2 wt.%. The scaffold encapsulated with 2wt.% GO had the great antibacterial performance with bacterial inhibition rate around 90%. As results show, the produced forsterite/1wt.% GO can be an attractive option for bone tissue engineering.
Collapse
Affiliation(s)
- A Najafinezhad
- Islamic Azad University Najafabad Branch, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, Najafabad, Isfahan Province, 8514143131, Iran (the Islamic Republic of)
| | - Hamid Reza Bakhsheshi Rad
- Universiti Teknologi Malaysia, Faculty of Education, Universiti Teknologi Malaysia, Faculty of Education, Universiti Teknologi Malaysia, Skudai, 81310, MALAYSIA
| | - A Saberi
- Islamic Azad University Najafabad Branch, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, Najafabad, Isfahan Province, 8514143131, Iran (the Islamic Republic of)
| | - Amir Abbas Nourbakhsh
- Islamic Azad University Sahreza Branch, Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran, Shahreza, 8871653388, Iran (the Islamic Republic of)
| | - Mohammadreza Daroonparvar
- University of Nevada Reno, Department of Chemical and Materials Engineering, University of Nevada, Reno, NV, 89501, USA, Reno, Nevada, 89557-0705, UNITED STATES
| | - Ahmad Fauzi Ismail
- Universiti Teknologi Malaysia, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia, Skudai, Johor, 81310, MALAYSIA
| | - Safian Sharif
- Universiti Teknologi Malaysia, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia, Skudai, Johor, 81310, MALAYSIA
| | - Yunqian Dai
- Southeast University, Southeast University, Nanjing, Jiangsu 211189, P. R. China, Nanjing, 210096, CHINA
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Cresent, Singapore 119260, Singapore, 119260, SINGAPORE
| | - Filippo Berto
- Department of Engineering Design and Materials, Norges teknisk-naturvitenskapelige universitet, Norwegian University of Science and Technology, 7491, Trondheim, Norway, Trondheim, 7491, NORWAY
| |
Collapse
|