1
|
Zhou XY, Wang CK, Shen ZF, Wang YF, Li YH, Hu YN, Zhang P, Zhang Q. Recent research progress on tumour-specific responsive hydrogels. J Mater Chem B 2024. [PMID: 38949411 DOI: 10.1039/d4tb00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Xuan-Yi Zhou
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Kai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Hang Li
- The Third Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Ning Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
3
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
4
|
Tran KA, DeOre BJ, Ikejiani D, Means K, Paone LS, De Marchi L, Suprewicz Ł, Koziol K, Bouyer J, Byfield FJ, Jin Y, Georges P, Fischer I, Janmey PA, Galie PA. Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds. Biomaterials 2023; 295:122061. [PMID: 36842339 PMCID: PMC10292106 DOI: 10.1016/j.biomaterials.2023.122061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Scaffolds delivered to injured spinal cords to stimulate axon connectivity often match the anisotropy of native tissue using guidance cues along the rostral-caudal axis, but current approaches do not mimic the heterogeneity of host tissue mechanics. Although white and gray matter have different mechanical properties, it remains unclear whether tissue mechanics also vary along the length of the cord. Mechanical testing performed in this study indicates that bulk spinal cord mechanics do differ along anatomical level and that these differences are caused by variations in the ratio of white and gray matter. These results suggest that scaffolds recreating the heterogeneity of spinal cord tissue mechanics must account for the disparity between gray and white matter. Digital light processing (DLP) provides a means to mimic spinal cord topology, but has previously been limited to printing homogeneous mechanical properties. We describe a means to modify DLP to print scaffolds that mimic spinal cord mechanical heterogeneity caused by variation in the ratio of white and gray matter, which improves axon infiltration compared to controls exhibiting homogeneous mechanical properties. These results demonstrate that scaffolds matching the mechanical heterogeneity of white and gray matter improve the effectiveness of biomaterials transplanted within the injured spinal cord.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - David Ikejiani
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kristen Means
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Louis S Paone
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Laura De Marchi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Katarina Koziol
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Fitzroy J Byfield
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Penelope Georges
- Council on Science and Technology, Princeton University, Princeton, NJ, USA
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
5
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
6
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
8
|
Mandal BB, Patra CR, Kundu SC. Biomedical materials research in India. Biomed Mater 2022; 17. [PMID: 36062979 DOI: 10.1088/1748-605x/ac8902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Biman B Mandal
- Indian Institute of Technology Guwahati, Guwahati, India
| | - Chitta R Patra
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Subhas C Kundu
- 3Bs Research Group, i3Bs-University of Minho, Guimaraes, Portugal
| |
Collapse
|