1
|
Dash S, Majood M, Meena R, Mukherjee M, Dinda AK, Kuanr BK, Mohanty S. Biocompatible polymer-coated magneto-fluorescent super nanoparticles for the homing of mesenchymal stem cells. Int J Biol Macromol 2024; 273:132794. [PMID: 38834114 DOI: 10.1016/j.ijbiomac.2024.132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Stem cell plays an important role in the clinical field. However, the effective delivery of stem cells to the targeted site relies on the efficient homing of the cells to the site of injury. In view of that, fluorescent magnetic nanoparticles stick out due to their wide range of enabling functions including cellular homing and tracking. The present study unravels the synthesis of polymer-coated biocompatible and fluorescent magnetic nanoparticles (FMNPs) by a single-step hydrothermal synthesis method. Importantly, the facile method developed the biological super nanoparticles consisting of the magnetic core, which is surrounded by the fluorescent nanodot-decorated polymeric shell. The synthesized particles showed an amorphous nature, and superparamagnetic properties, with efficient fluorescence properties of emission at the blue range (̴ 410 nm). The FMNP labeling showed the mesenchymal stem cell (MSC) homing to the desired site in the presence of an external magnetic field. The in-house synthesized nanoparticles showed significant cytocompatibility and hemocompatibility in vitro as well as in vivo conditions owing to their surface coating. This unprecedented work advances the efficient internalization of FMNPs in MSCs and their enhanced migration potential provides a breakthrough in stem cell delivery for therapeutic applications. STATEMENT OF SIGNIFICANCE: The bi-modal fluorescent magnetic nanoparticles hold a promising role in the biomedical field for mesenchymal stem cell homing and tracking. Hence, in this study, for the first time, we have synthesized the fluorescent magnetic nanoparticle with polymer coating via an easy single-step method. The nanoparticle with a polymer coat enhanced the biocompatibility and effortless internalization of the nanoparticle into mesenchymal stem cells without hampering the native stem cell properties. Furthermore, the enhanced migration potential of such magnetized stem cells and their homing at the target site by applying an external magnetic field opened up avenues for the smart delivery of mesenchymal stem cells at complex sites such as retina for the tissue regeneration.
Collapse
Affiliation(s)
- Saumya Dash
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Ravindra Meena
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijoy K Kuanr
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
3
|
Mandal BB, Patra CR, Kundu SC. Biomedical materials research in India. Biomed Mater 2022; 17. [PMID: 36062979 DOI: 10.1088/1748-605x/ac8902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Biman B Mandal
- Indian Institute of Technology Guwahati, Guwahati, India
| | - Chitta R Patra
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Subhas C Kundu
- 3Bs Research Group, i3Bs-University of Minho, Guimaraes, Portugal
| |
Collapse
|