1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
3
|
Sun Y, Sun K, Ma Z, Zhang X, Du X, Jia Y, Zhu Y, Inam M, Gao Y, Basang W. miR-122-5p Promotes Cowshed Particulate Matter2.5-Induced Apoptosis in NR8383 by Targeting COL4A1. TOXICS 2024; 12:386. [PMID: 38922066 PMCID: PMC11209608 DOI: 10.3390/toxics12060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yunna Jia
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| |
Collapse
|
4
|
Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum Extracellular Matrix-Silk Fibroin Hydroscaffold Promotes Wound Healing through Vascularization and Tissue Remodeling in the Diabetic Rat Model. ACS Biomater Sci Eng 2024; 10:1090-1105. [PMID: 38275123 DOI: 10.1021/acsbiomaterials.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Ranta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Ma Q, Wang X, Feng B, Liang C, Wan X, El-Newehy M, Abdulhameed MM, Mo X, Wu J. Fiber configuration determines foreign body response of electrospun scaffolds: in vitroand in vivoassessments. Biomed Mater 2024; 19:025007. [PMID: 38194703 DOI: 10.1088/1748-605x/ad1c99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Biomaterial scaffolds boost tissue repair and regeneration by providing physical support, delivering biological signals and/or cells, and recruiting endogenous cells to facilitate tissue-material integration and remodeling. Foreign body response (FBR), an innate immune response that occurs immediately after biomaterial implantation, is a critical factor in determining the biological outcomes of biomaterial scaffolds. Electrospinning is of great simplicity and cost-effectiveness to produce nanofiber scaffolds with well-defined physicochemical properties and has been used in a variety of regenerative medicine applications in preclinical trials and clinical practice. A deep understanding of causal factors between material properties and FBR of host tissues is beneficial to the optimal design of electrospun scaffolds with favorable immunomodulatory properties. We herein prepared and characterized three electrospun scaffolds with distinct fiber configurations and investigated their effects on FBR in terms of immune cell-material interactions and host responses. Our results show that electrospun yarn scaffold results in greater cellular immune reactions and elevated FBR inin vivoassessments. Although the yarn scaffold showed aligned fiber bundles, it failed to induce cell elongation of macrophages due to its rough surface and porous grooves between yarns. In contrast, the aligned scaffold showed reduced FBR compared to the yarn scaffold, indicating a smooth surface is also a contributor to the immunomodulatory effects of the aligned scaffold. Our study suggests that balanced porousness and smooth surface of aligned fibers or yarns should be the key design parameters of electrospun scaffolds to modulate host responsein vivo.
Collapse
Affiliation(s)
- Qiaolin Ma
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
6
|
Liu H, Wu Q, Liu S, Liu L, He Z, Liu Y, Sun Y, Liu X, Luo E. The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction. Biomaterials 2024; 304:122406. [PMID: 38096618 DOI: 10.1016/j.biomaterials.2023.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Calcium phosphate ceramics-based biomaterials were reported to have good biocompatibility and osteoinductivity and have been widely applied for bone defect repair and regeneration. However, the mechanism of their osteoinductivity is still unclear. In our study, we established an ectopic bone formation in vivo model and an in vitro macrophage cell co-culture system with calcium phosphate ceramics to investigate the effect of biphasic calcium phosphate on osteogenesis via regulating macrophage M1/M2 polarization. Our micro-CT data suggested that biphasic calcium phosphate had significant osteoinductivity, and the fluorescence co-localization detection found increased F4/80+/integrin αvβ3+ macrophages surrounding the biphasic calcium phosphate scaffolds. Besides, our study also revealed that biphasic calcium phosphate promoted M2 polarization of macrophages via upregulating integrin αvβ3 expression compared to tricalcium phosphate, and the increased M2 macrophages could subsequently augment the osteogenic differentiation of MSCs in a TGFβ mediated manner. In conclusion, we demonstrated that macrophages subjected to biphasic calcium phosphate could polarize toward M2 phenotype via triggering integrin αvβ3 and secrete TGFβ to increase the osteogenesis of MSCs, which subsequently enhances bone regeneration.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qionghui Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration & School of Stomatology & Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
7
|
Yang X, Fu Q, Zhang W, An Q, Zhang Z, Li H, Chen X, Chen Z, Cheng Y, Chen S, Man C, Du L, Chen Q, Wang F. Overexpression of Pasteurella multocida OmpA induces transcriptional changes and its possible implications for the macrophage polarization. Microb Pathog 2023; 183:106212. [PMID: 37353176 DOI: 10.1016/j.micpath.2023.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.
Collapse
Affiliation(s)
- Xiaohong Yang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qiaoyu Fu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Hong Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xiangying Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhen Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|