1
|
Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water. Int J Mol Sci 2022; 23:ijms23116121. [PMID: 35682798 PMCID: PMC9181504 DOI: 10.3390/ijms23116121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion's path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion's path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.
Collapse
|
2
|
Carvalho A, Trevisanutto PE, Taioli S, Castro Neto AH. Computational methods for 2D materials modelling. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:106501. [PMID: 34474406 DOI: 10.1088/1361-6633/ac2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Materials with thickness ranging from a few nanometers to a single atomic layer present unprecedented opportunities to investigate new phases of matter constrained to the two-dimensional plane. Particle-particle Coulomb interaction is dramatically affected and shaped by the dimensionality reduction, driving well-established solid state theoretical approaches to their limit of applicability. Methodological developments in theoretical modelling and computational algorithms, in close interaction with experiments, led to the discovery of the extraordinary properties of two-dimensional materials, such as high carrier mobility, Dirac cone dispersion and bright exciton luminescence, and inspired new device design paradigms. This review aims to describe the computational techniques used to simulate and predict the optical, electronic and mechanical properties of two-dimensional materials, and to interpret experimental observations. In particular, we discuss in detail the particular challenges arising in the simulation of two-dimensional constrained fermions and quasiparticles, and we offer our perspective on the future directions in this field.
Collapse
Affiliation(s)
- A Carvalho
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - P E Trevisanutto
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Via Sommarive, 14, 38123 Povo TN, Trento, Italy
| | - S Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Via Sommarive, 14, 38123 Povo TN, Trento, Italy
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - A H Castro Neto
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore
- Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| |
Collapse
|
3
|
Abstract
In this work, we outline a general method for calculating Auger spectra in molecules, which accounts for the underlying symmetry of the system. This theory starts from Fano’s formulation of the interaction between discrete and continuum states, and it generalizes this formalism to deal with the simultaneous presence of several intermediate quasi-bound states and several non-interacting decay channels. Our theoretical description is specifically tailored to resonant autoionization and Auger processes, and it explicitly includes the incoming wave boundary conditions for the continuum states and an accurate treatment of the Coulomb repulsion. This approach is implemented and applied to the calculation of the K−LL Auger and autoionization spectra of ozone, which is a C2v symmetric molecule, whose importance in our atmosphere to filter out radiation has been widely confirmed. We also show the effect that the molecular point group and, in particular, the localization of the core-hole in the oxygen atoms related by symmetry operations, has on the electronic structure of the Auger states and on the spectral lineshape by comparing our results with the experimental data.
Collapse
|
4
|
Taioli S, Trevisanutto PE, de Vera P, Simonucci S, Abril I, Garcia-Molina R, Dapor M. Relative Role of Physical Mechanisms on Complex Biodamage Induced by Carbon Irradiation. J Phys Chem Lett 2021; 12:487-493. [PMID: 33373242 DOI: 10.1021/acs.jpclett.0c03250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effective use of swift ion beams in cancer treatment (known as hadrontherapy) as well as appropriate protection in manned space missions rely on the accurate understanding of the energy delivery to cells that damages their genetic information. The key ingredient characterizing the response of a medium to the perturbation induced by charged particles is its electronic excitation spectrum. By using linear-response time-dependent density functional theory, we obtained the energy and momentum transfer excitation spectrum (the energy-loss function, ELF) of liquid water (the main constituent of biological tissues), which was in excellent agreement with experimental data. The inelastic scattering cross sections obtained from this ELF, together with the elastic scattering cross sections derived by considering the condensed phase nature of the medium, were used to perform accurate Monte Carlo simulations of the energy deposited by swift carbon ions in liquid water and carried away by the generated secondary electrons, producing inelastic events such as ionization, excitation, and dissociative electron attachment (DEA). The latter are strongly correlated with cellular death, which is scored in sensitive volumes with the size of two DNA convolutions. The sizes of the clusters of damaging events for a wide range of carbon-ion energies, from those relevant to hadrontherapy up to those for cosmic radiation, predict with unprecedented statistical accuracy the nature and relative magnitude of the main inelastic processes contributing to radiation biodamage, confirming that ionization accounts for the vast majority of complex damage. DEA, typically regarded as a very relevant biodamage mechanism, surprisingly plays a minor role in carbon-ion induced clusters of harmful events.
Collapse
Affiliation(s)
- Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Paolo E Trevisanutto
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Center for Information Technology, Bruno Kessler Foundation, 38123 Trento, Italy
| | - Pablo de Vera
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Stefano Simonucci
- School of Science and Technology, University of Camerino, 62032 Camerino, Italy
- INFN, Sezione di Perugia, 06123 Perugia, Italy
| | - Isabel Abril
- Departament de Física Aplicada, Universitat d'Alacant, 03080 Alacant, Spain
| | - Rafael Garcia-Molina
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Maurizio Dapor
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
| |
Collapse
|
5
|
Morresi T, Taioli S, Simonucci S. Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic Structure. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tommaso Morresi
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN); Trento I-38123 Italy
| | - Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN); Trento I-38123 Italy
- Faculty of Mathematics and Physics; Charles University; Prague CZ-18000 Czech Republic
| | - Stefano Simonucci
- Division of Physics; School of Science and Technology; Università di Camerino and INFN; Sezione di Perugia I-62032 Italy
| |
Collapse
|
6
|
Kövér L. Multiscale approach for modeling electron spectra induced by photons from solids. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- L. Kövér
- Institute for Nuclear Research; Hungarian Academy of Sciences; 18/c Bem tér H-4026 Debrecen Hungary
| |
Collapse
|
7
|
Taioli S, Simonucci S, A Beccara S, Garavelli M. Tetrapeptide unfolding dynamics followed by core-level spectroscopy: a first-principles approach. Phys Chem Chem Phys 2015; 17:11269-76. [PMID: 25839064 DOI: 10.1039/c4cp05902f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work we demonstrate that core level analysis is a powerful tool for disentangling the dynamics of a model polypeptide undergoing conformational changes in solution and disulphide bond formation. In particular, we present computer simulations within both initial and final state approximations of 1s sulphur core level shifts (S1s CLS) of the CYFC (cysteine-phenylalanine-tyrosine-cysteine) tetrapeptide for different folding configurations. Using increasing levels of accuracy, from Hartree-Fock and density functional theory to configuration interaction via a multiscale algorithm capable of reducing drastically the computational cost of electronic structure calculations, we find that distinct peptide arrangements present S1s CLS sizeably different (in excess of 0.5 eV) with respect to the reference disulfide bridge state. This approach, leading to experimentally detectable signals, may represent an alternative to other established spectroscopic techniques.
Collapse
Affiliation(s)
- Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, and Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Trento, Italy.
| | | | | | | |
Collapse
|
8
|
Taioli S, Simonucci S. A Computational Perspective on Multichannel Scattering Theory with Applications to Physical and Nuclear Chemistry. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/bs.arcc.2015.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Taioli S. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations. J Mol Model 2014; 20:2260. [DOI: 10.1007/s00894-014-2260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
|
10
|
Dapor M, Calliari L, Fanchenko S. Energy loss of electrons backscattered from solids: measured and calculated spectra for Al and Si. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maurizio Dapor
- Interdisciplinary Laboratory for Computational Science; Centre for Materials and Microsystems, FBK; 38123 Povo Trento Italy
- Department of Materials Engineering and Industrial Technologies; University of Trento; 38123 Trento Italy
| | - Lucia Calliari
- Interdisciplinary Laboratory for Computational Science; Centre for Materials and Microsystems, FBK; 38123 Povo Trento Italy
| | - Sergey Fanchenko
- National Research Center “Kurchatov Institute”; 123182 Moscow Russia
| |
Collapse
|
11
|
Haberer D, Vyalikh DV, Taioli S, Dora B, Farjam M, Fink J, Marchenko D, Pichler T, Ziegler K, Simonucci S, Dresselhaus MS, Knupfer M, Büchner B, Grüneis A. Tunable band gap in hydrogenated quasi-free-standing graphene. NANO LETTERS 2010; 10:3360-6. [PMID: 20695447 DOI: 10.1021/nl101066m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.
Collapse
Affiliation(s)
- D Haberer
- IFW Dresden, PO Box 270116, D-01171 Dresden,Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|