1
|
Accordini S, Lando V, Calciano L, Bombieri C, Malerba G, Margagliotti A, Minelli C, Potts J, van der Plaat DA, Olivieri M. SNPs in FAM13Aand IL2RBgenes are associated with FeNO in adult subjects with asthma. J Breath Res 2023; 18:016001. [PMID: 37733009 DOI: 10.1088/1752-7163/acfbf1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Nitric oxide has different roles in asthma as both an endogenous modulator of airway function and a pro-inflammatory mediator. Fractional exhaled nitric oxide (FeNO) is a reliable, quantitative, non-invasive, simple, and safe biomarker for assessing airways inflammation in asthma. Previous genome-wide and genetic association studies have shown that different genes and single nucleotide polymorphisms (SNPs) are linked to FeNO. We aimed at identifying SNPs in candidate genes or gene regions that are associated with FeNO in asthma. We evaluated 264 asthma cases (median age 42.8 years, female 47.7%) who had been identified in the general adult population within the Gene Environment Interactions in Respiratory Diseases survey in Verona (Italy; 2008-2010). Two hundred and twenty-one tag-SNPs, which are representative of 50 candidate genes, were genotyped by a custom GoldenGate Genotyping Assay. A two-step association analysis was performed without assuming ana priorigenetic model: step (1) a machine learning technique [gradient boosting machine (GBM)] was used to select the 15 SNPs with the highest variable importance measure; step (2) the GBM-selected SNPs were jointly tested in a linear regression model with natural log-transformed FeNO as the normally distributed outcome and with age, sex, and the SNPs as covariates. We replicated our results within an independent sample of 296 patients from the European Community Respiratory Health Survey III. We found that SNP rs987314 in family with sequence similarity 13 member A (FAM13A) and SNP rs3218258 in interleukin 2 receptor subunit beta (IL2RB) gene regions are significantly associated with FeNO in adult subjects with asthma. These genes are involved in different mechanisms that affect smooth muscle constriction and endothelial barrier function responses (FAM13A), or in immune response processes (IL2RB). Our findings contribute to the current knowledge on FeNO in asthma by identifying two novel SNPs associated with this biomarker of airways inflammation.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Valentina Lando
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Cristina Bombieri
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Giovanni Malerba
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Antonino Margagliotti
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - James Potts
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - Diana A van der Plaat
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, United Kingdom
| | - Mario Olivieri
- Retired Professor of Occupational Medicine, University of Verona, Verona, Italy
| |
Collapse
|
2
|
The Genetic Factors of the Airway Epithelium Associated with the Pathology of Asthma. Genes (Basel) 2022; 13:genes13101870. [PMID: 36292755 PMCID: PMC9601469 DOI: 10.3390/genes13101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a chronic disease of the airways characterized by inflammation, tightened muscles, and thickened airway walls leading to symptoms such as shortness of breath, chest tightness, and cough in patients. The increased risk of asthma in children of asthmatics parents supports the existence of genetic factors involved in the pathogenesis of this disease. Genome-wide association studies have discovered several single nucleotide polymorphisms associated with asthma. These polymorphisms occur within several genes and can contribute to different asthma phenotypes, affect disease severity, and clinical response to different therapies. The complexity in the etiology of asthma also results from interactions between environmental and genetic factors. Environmental exposures have been shown to increase the prevalence of asthma in individuals who are genetically susceptible. This review summarizes what is currently known about the genetics of asthma in relation to risk, response to common treatments, and gene-environmental interactions.
Collapse
|
3
|
Abstract
(1) Background: Exhaled nitric oxide (NO) has been considered as a biomarker of airway inflammation. The measurement of fractional exhaled NO (FENO) is a valuable test for assessing local inflammation in subjects with allergic rhinitis (AR). (2) Objective: To evaluate (a) the correlation between nasal FENO with anthropometric characteristics, symptoms of AR and nasal peak flows in children without and with AR; and (b) the cut-off of nasal FENO for diagnosis of AR in symptomatic children. (3) Methods: The study was a descriptive and cross-sectional study in subjects with and without AR < 18 years old. All clinical and functional characteristics of the study subjects were recorded for analysis. They were divided into healthy subjects for the control group and subjects with AR who met all inclusion criteria. (4) Results: 100 subjects (14 ± 3 years) were included, including 32 control subjects and 68 patients with AR. Nasal FENO in AR patients was significantly higher than in control subjects: 985 ± 232 ppb vs. 229 ± 65 ppb (p < 0.001). In control subjects, nasal FENO was not correlated with anthropometric characteristics and nasal inspiratory or expiratory peak flows (IPF or EPF) (p > 0.05). There was a correlation between nasal FENO and AR symptoms in AR patients and nasal IPF and EPF (p = 0.001 and 0.0001, respectively). The cut-off of nasal FENO for positive AR diagnosis with the highest specificity and sensitivity was ≥794 ppb (96.7% and 92.6%, respectively). (5) Conclusion: The use of nasal FENO as a biomarker of AR provides a useful tool and additional armamentarium in the management of allergic rhinitis.
Collapse
|
4
|
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosinophil Granulocytes. BIOLOGY 2020; 9:biology9120457. [PMID: 33321726 PMCID: PMC7763668 DOI: 10.3390/biology9120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Eosinophil granulocytes (eosinophils) belong to the family of white blood cells that play important roles in the development of asthma and various types of allergy. Eosinophils are cells with a diameter of 12–17 µm and they originate from myeloid precursors. They were discovered by Paul Ehrlich in 1879 in the process of staining fixed blood smears with aniline dyes. Apoptosis (programmed cell death) is the process by which cells lose their functionality. Therefore, it is very important to study the apoptosis of eosinophils and their survival factors to understand how to develop new drugs based on the modulation of eosinophil apoptosis for the treatment of asthma and allergic diseases. Abstract In the past 10 years, the number of people in the Czech Republic with allergies has doubled to over three million. Allergic pollen catarrh, constitutional dermatitis and asthma are the allergic disorders most often diagnosed. Genuine food allergies today affect 6–8% of nursing infants, 3–5% of small children, and 2–4% of adults. These disorders are connected with eosinophil granulocytes and their apoptosis. Eosinophil granulocytes are postmitotic leukocytes containing a number of histotoxic substances that contribute to the initiation and continuation of allergic inflammatory reactions. Eosinophilia results from the disruption of the standard half-life of eosinophils by the expression of mechanisms that block the apoptosis of eosinophils, leading to the development of chronic inflammation. Glucocorticoids are used as a strong acting anti-inflammatory medicine in the treatment of hypereosinophilia. The removal of eosinophils by the mechanism of apoptosis is the effect of this process. This work sums up the contemporary knowledge concerning the apoptosis of eosinophils, its role in the aforementioned disorders, and the indications for the use of glucocorticoids in their related therapies.
Collapse
|