1
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Ojeda-Piedra SA, Zambrano-Zaragoza ML, González-Reza RM, García-Betanzos CI, Real-Sandoval SA, Quintanar-Guerrero D. Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238187. [PMID: 36500284 PMCID: PMC9738418 DOI: 10.3390/molecules27238187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.
Collapse
Affiliation(s)
- Sergio A. Ojeda-Piedra
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
- Correspondence: ; Tel.: +52-5556232065
| | - Ricardo M. González-Reza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - Claudia I. García-Betanzos
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - Samantha A. Real-Sandoval
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54714, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli CP 54745, Mexico
| |
Collapse
|
3
|
Karthick Raja Namasivayam S, Manohar M, Aravind Kumar J, Samrat K, Kande A, Arvind Bharani RS, Jayaprakash C, Lokesh S. Green chemistry principles for the synthesis of anti fungal active gum acacia-gold nanocomposite - natamycin (GA-AuNC-NT) against food spoilage fungal strain Aspergillus ochraceopealiformis and its marked Congo red dye adsorption efficacy. ENVIRONMENTAL RESEARCH 2022; 212:113386. [PMID: 35569536 DOI: 10.1016/j.envres.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - Mohith Manohar
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | - J Aravind Kumar
- Department of Biomass & Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | - Akhil Kande
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | | | - C Jayaprakash
- Food Microbiology Division, Defence Food Research Laboratory (DFRL), Mysuru (Mysore), 570011, Karnataka, India
| | - S Lokesh
- Department of Energy & Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
4
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
5
|
Sallak N, Motallebi Moghanjoughi A, Ataee M, Anvar A, Golestan L. Antimicrobial biodegradable film based on corn starch/ Satureja khuzestanicaessential oil/Ag-TiO 2nanocomposites. NANOTECHNOLOGY 2021; 32:405703. [PMID: 34111851 DOI: 10.1088/1361-6528/ac0a15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Biosynthesis of nanoparticles (NPs) using plant extract is an eco-friendly method, in which natural materials are used and is a simple, non-toxic, and environmentally friendly green synthesis. In this study, corn starch (CS) film containingSatureja khuzestanicaessential oil (SEO) and Ag-TiO2nanocomposites (size: nearly 30-60 nm) were prepared and its antimicrobial, morphological, physical, and mechanical characteristics were investigated. Ag-TiO2nanocomposites with different molar percentages were synthesized byS. khuzestanicaextract and based on the best antibacterial results against Gram-negative bacteria (Escherichia coliATCC 25922 andSalmonella typhimuriumATCC 14028) and Gram-positive bacteria (Staphylococcus aureusATCC 25923), were chosen to prepare the films. Four types of biodegradable films were provided: simple CS film, the film incorporated with SEO (essence film), the film incorporated with Ag-TiO2nanocomposites (nanofilm), and nano/essence film. The scanning electron microscopy (SEM) was employed for investigating the morphology of the films. The combined energy-dispersive x-ray spectroscopy with SEM was applied to analyze the near-surface elements. Physical characteristics of the films containing water vapor permeability (%) and their moisture content, mechanical tests, and antibacterial properties were examined. Antimicrobial evaluation of the films revealed a 3-4 log and 6-7 log (CFU ml-1) reduction inS. aureusandE. colispecies respectively, compared to the control group. The bio-polymer film incorporated with extracted essential oil ofS. khuzestanicaand Ag-TiO2nanocomposites are effective to package foods and can delay chemical, physical, and microbial spoilage.
Collapse
Affiliation(s)
- Neda Sallak
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Maryam Ataee
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Golestan
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
6
|
Abstract
Essential oils (EOs) are known as any aromatic oily organic substances which are naturally synthesized in plants. Exhibiting a broad range of biological activities, EOs have played a key role in numerous industries for ages, including pharmaceutical, textile, and food. However, the volatility and high sensitivity to environmental influences pose challenges to the application of EOs on industrial scale. Microencapsulation via the spray-drying method is one of the promising techniques to overcome these challenges, thanks to the presence of wall materials that properly protect the core EOs from oxidation and evaporation. By optimization of key factors related to the infeed emulsion properties and spray-drying process, the encapsulation efficiency and retention of encapsulated EOs could be significantly improved, thus allowing a wide range of EO applications. This review attempts to discuss on different determining factors of the spray-drying process to develop an effective encapsulation formula for EOs. Furthermore, recent applications of encapsulated EOs in the fields of foods, pharmaceuticals, and textile industries are also thoroughly addressed.
Collapse
|
7
|
Ozogul F, Elabed N, Ceylan Z, Ocak E, Ozogul Y. Nano-technological approaches for plant and marine-based polysaccharides for nano-encapsulations and their applications in food industry. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:187-236. [PMID: 34311900 DOI: 10.1016/bs.afnr.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Novel food preservation methods, along with preservatives have been employed to prevent food products from spoilage. There is an increasing demand to substitute synthetic preservatives with natural bioactive compounds since they are safe and environmentally friendly. Bioactive compounds with functional and therapeutic properties are found in foods and have also beneficial physiological and immunological health effects. However, there are some issues associated with bioactive compounds, such as low stability, solubility, and permeability. Encapsulation techniques, especially nano-encapsulation, are a promising technique to overcome these restrictions. A range of the plants' constituents can be converted into bio-nanomaterials. Major plant constituents are polysaccharides which have good biocompatibility properties and therapeutic activities, such as antioxidant, antiviral, anti-inflammatory, anti-allergic, and anti-tumor. Among plant and marine-based polysaccharides, cellulose, starch, alginates, chitosan, and carrageenans have been used as carrier materials to preserve core material. Moreover, many studies indicated that favorable sources such as plant and marine based polysaccharides are emerging. This chapter will cover plant and marine-based polysaccharides for nano-encapsulation and their application in the food industry.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, Van, Turkey
| | - Elvan Ocak
- Faculty of Engineering, Department of Food Engineering, Yuzuncu Yil University, Van, Turkey
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|