1
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
2
|
Heredia B, Tapia R, Young BJ, Hasuoka P, Pacheco P, Roqueiro G. Phytoextraction of Cu, Cd, Zn and As in four shrubs and trees growing on soil contaminated with mining waste. CHEMOSPHERE 2022; 308:136146. [PMID: 36030936 DOI: 10.1016/j.chemosphere.2022.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mining activity has degraded large extensions of soil and its waste is composed of metals, anthropogenic chemicals, and sterile rocks. The use of native species in the recovery of polluted soils improves the conditions for the emergence of other species, tending to a process of ecosystem restoration. The objective of this study was to evaluate the bioaccumulation of metal(loid)s in four species of native plants and the effect of their distribution and bioavailability in soil with waste from an abandoned gold mine. Soil samples were taken from two sites in La Planta, San Juan, Argentina: Site 1 and Site 2 (mining waste and reference soil, respectively). In Site 1, vegetative organ samples were taken from Larrea cuneifolia, Bulnesia retama, Plectrocarpa tetracantha, and Prosopis flexuosa. The concentration of metal(loid)s in soil from Site 1 were Zn > As > Cu > Cd, reaching values of 7123, 6516, 240 and 76 mg kg-1, respectively. The contamination indices were among the highest categories of contamination for all four metal(loid)s. The spatial interpolation analysis showed the effect of the vegetation as the lowest concentration of metal(loid)s were found in rhizospheric soil. The maximum concentrations of As, Cu, Cd and Zn found in vegetative organs were 371, 461, 28, and 1331 mg kg-1, respectively. L. cuneifolia and B. retama presented high concentrations of Cu and Zn. The most concentrated metal(loid)s in P. tetracantha and P. flexuosa were Zn, As and Cu. Cd was the least concentrated metal in all four species. The values of BAF and TF were greater than one for all four species. In conclusion, the different phytoextraction capacities and the adaptations to arid environments of these four species are an advantage for future phytoremediation strategies. Their application contributes to the ecological restoration and risk reduction, allowing the recovery of ecosystem services.
Collapse
Affiliation(s)
- Belén Heredia
- Consejo Nacional de Investigación Científica y Técnica (CONICET-CCT San Juan), Facultad de Ingeniería-UNSJ, Av. Libertador Gral. San Martín 1109, 5400, San Juan, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, 5427, San Juan, Argentina.
| | - Raul Tapia
- Consejo Nacional de Investigación Científica y Técnica (CONICET-CCT San Juan), Facultad de Ingeniería-UNSJ, Av. Libertador Gral. San Martín 1109, 5400, San Juan, Argentina; Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, 5400, San Juan, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, 5427, San Juan, Argentina.
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Las Cabañas y Los Reseros s/n, 1876, Hurlingham, Buenos Aires, Argentina.
| | - Paul Hasuoka
- Instituto de Química San Luis (INQUISAL-CONICET), Chacabuco y Pedernera s/n, 5700, San Luis, Argentina.
| | - Pablo Pacheco
- Instituto de Química San Luis (INQUISAL-CONICET), Chacabuco y Pedernera s/n, 5700, San Luis, Argentina.
| | - Gonzalo Roqueiro
- Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, 5400, San Juan, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, 5427, San Juan, Argentina.
| |
Collapse
|
3
|
Budzyńska S, Kubiak A, Szostek M, Budka A, Gąsecka M, Niedzielski P, Zheng L, Mleczek M. Trees and shrubs from a post-industrial area high in calcium and trace elements: the potential of dendroremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:493-506. [PMID: 34310221 DOI: 10.1080/15226514.2021.1954877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
That is probably the first study to date of trees and shrubs differing in age and growing on post-industrial soil contaminated with calcium (Ca) and selected toxic metals/metalloids. The obtained results show that an alkaline reaction (less than 9) of soil and an unusually high Ca concentration may help the studied tree species to adapt/survive in unfavorable habitat conditions (high concentration of toxic elements). The efficiency of phytoextraction of toxic elements was so high that, especially for forest animals (roe-deer) that consume, e.g., willow shoots, it could pose a serious threat to health and life, both for them and potentially for humans.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Kubiak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Szostek
- Department of Soil Science, Environmental Chemistry and Hydrology, University of Rzeszów, Rzeszów, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Monika Gąsecka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Linlin Zheng
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Mirosław Mleczek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|