1
|
Markandeywar TS, Narang RK. Collagen and chitosan-based biogenic sprayable gel of silver nanoparticle for advanced wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5543-5567. [PMID: 39576302 DOI: 10.1007/s00210-024-03554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/19/2024] [Indexed: 04/11/2025]
Abstract
Silver nanoparticles have gained significant attention recently due to their unique antibacterial properties, making them promising candidates for wound care applications. This study proposes a novel approach for advanced wound care using a silver nanoparticle-impregnated biogenic spray hydrogel supplemented with collagen and chitosan. Silver nanoparticles were incorporated into the hydrogel (optimized by a QbD approach) to impart antimicrobial activity, crucial for combating wound infections and promoting faster healing. The study assessed the physical and chemical properties of the biogenic hydrogel, including its viscosity, pH, and nanoparticle dispersion characteristics. In vitro, antimicrobial efficacy against common wound pathogens and in vivo studies using chronic wound models in small animals portrayed the immense potential of the developed biogenic hydrogel in effectively reducing the bacterial load of broad-spectrum pathogens. The hydrogel exhibited excellent biocompatibility, supporting cell proliferation and tissue repair without toxic effects. It accelerated wound healing, improved collagen deposition, and enhanced tissue regeneration in the tested animals by reducing proinflammatory cytokines, ROS, and NF-kb levels. Overall, this innovative silver nanoparticle-impregnated biogenic spray hydrogel of collagen and chitosan presents a uniform spray pattern that proved efficient, showing a promising solution for advanced wound care. Its biocompatibility, safety, anti-inflammatory, antimicrobial efficacy, and wound healing properties hold great potential for improving the management of complex wounds, opening new avenues in wound care and regenerative medicine.
Collapse
Affiliation(s)
- Tanmay S Markandeywar
- I.K. Gujral Punjab Technical University (IKGPTU), Kapurthala Highway, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Gu R, Guo J, Zhang S, Zhou J, Wang J, Cohen Stuart MA, Wang M. Effects of catechol grafting on chitosan-based coacervation and adhesion. Int J Biol Macromol 2024; 267:131662. [PMID: 38636754 DOI: 10.1016/j.ijbiomac.2024.131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.
Collapse
Affiliation(s)
- Runkang Gu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jiangtao Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Shiting Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Lu S, Kong S, Wang Y, Hu Z, Zhang L, Liao M. Gastric acid-response chitosan/alginate/tilapia collagen peptide composite hydrogel: Protection effects on alcohol-induced gastric mucosal injury. Carbohydr Polym 2022; 277:118816. [PMID: 34893233 DOI: 10.1016/j.carbpol.2021.118816] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Long-term excessive alcohol intake can easily lead to gastritis, gastric ulcer, and gastric bleeding. In this paper, the gastric acid-responsive hydrogel of CS-NAC/alginate/tilapia collagen peptide (CS-NAC/ALG/TCP) was developed. Its structure and properties were determined. The alcohol-induced gastric mucosal injury models in mice were established to evaluate the protective effects of CS-NAC/ALG/TCP. The results showed that CS-NAC/ALG/TCP was successfully fabricated, and it showed a sustained release of TCP, strong mucoadhesion, and excellent biodegradability in vitro. In the animal experiments, CS-NAC/ALG/TCP improved the oxidative stress status of the gastric mucosa by increasing the levels of SOD, GSH, and CAT in tissues. It also down-regulated the expression of MPO, TNF-α, IL-1β, and IL-6, and increased the production of gastric protective factors such as PGE2 and NO in mouse stomach, thereby reducing the alcohol-induced inflammation and protecting the gastric mucosal injury. Besides, CS-NAC/ALG/TCP can also increase the activities of alcohol metabolism enzymes to improve alcohol metabolism, thereby reducing alcoholic damage. In conclusion, CS-NAC/ALG/TCP is a promising candidate for the treatment of alcohol-induced gastric injury.
Collapse
Affiliation(s)
- Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Songzhi Kong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ye Wang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lingyu Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingneng Liao
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Lu S, Zhang L, Hu Z, Kong S, Zhang Z, Li G. Optimized preparation of gastric acid-response sulfhydryl functionalized chitosan/alginate/tilapia peptide hydrogel and its protective effects on alcohol-induced liver and brain injury. RSC Adv 2021; 11:34544-34557. [PMID: 35494747 PMCID: PMC9043026 DOI: 10.1039/d1ra06361h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term alcohol intake or drinking large quantities of alcohol at one time can cause organ damage, which in turn can lead to chronic diseases. It is of important clinical and social significance to find effective approaches for the prevention and treatment of alcohol-induced diseases. In this paper, sulfhydryl functionalized chitosan (chitosan-N-acetyl-l-cysteine, CS-NAC) and sodium alginate (SA) were used as the matrix materials to contain tilapia peptide (TP), and a gastric acid-response hydrogel (CS-NAC/SA/TP) was prepared. Taking the ethanol adsorption rate as the response index, based on the results of the single factor test, the preparation process of CS-NAC/SA/TP was optimized through the Box-Behnken design. The swelling and antioxidant properties of CS-NAC/SA/TP were tested in vitro, and the protective effects on alcohol-induced acute liver injury and chronic brain injury were assessed in vivo. Structural characterization showed that CS-NAC/SA/TP was successfully prepared. Under the optimal conditions (SA concentration of 1%, M CS-NAC/M CaCO3 of 1 : 1, M SA/M CS-NAC(CaCO3) of 15 : 1), the prepared CS-NAC/SA/TP had a porous structure, a swelling ratio of 2350%, an ethanol adsorption rate of 56.23% and strong antioxidant capacities in vitro. Animal experiment results demonstrated that CS-NAC/SA/TP effectively reduced liver and brain injuries in mice caused by alcoholism. Summarily, these findings indicate that CS-NAC/SA/TP has potential applications in preventing alcohol-induced liver and brain injuries.
Collapse
Affiliation(s)
- Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Lingyu Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Songzhi Kong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Zhaoyu Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Guangfa Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| |
Collapse
|
5
|
Samyn P. A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. Int J Biol Macromol 2021; 178:71-93. [PMID: 33609581 DOI: 10.1016/j.ijbiomac.2021.02.091] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Nature provides concepts and materials with interesting functionalities to be implemented in innovative and sustainable materials. In this review, it is illustrated how the combination of biological macromolecules, i.e. polydopamine and polysaccharides (cellulose, chitin/chitosan, alginate), enables to create functional materials with controlled properties. The mussel-adhesive properties rely on the secretion of proteins having 3,4-dihydroxyphenylalanine amino acid with catechol groups. Fundamental understanding on the biological functionality and interaction mechanisms of dopamine in the mussel foot plaque is presented in parallel with the development of synthetic analogues through extraction or chemical polymer synthesis. Subsequently, modification of cellulose, chitin/chitosan or alginate and their nanoscale structures with polydopamine is discussed for various technical applications, including bio- and nanocomposites, films, filtration or medical membranes, adhesives, aerogels, or hydrogels. The presence of polydopamine stretches far beyond surface adhesive properties, as it can be used as an intermediate to provide additional performance of hydrophobicity, self-healing, antimicrobial, photocatalytic, sensoric, adsorption, biocompatibility, conductivity, coloring or mechanical properties. The dopamine-based 'green' chemistry can be extended towards generalized catechol chemistry for modification of polysaccharides with tannic acid, caffeic acid or laccase-mediated catechol functionalization. Therefore, the modification of polysaccharides with polydopamine or catechol analogues provides a general platform for sustainable material functionalization.
Collapse
Affiliation(s)
- Pieter Samyn
- Hasselt University, Institute for Materials Research, Applied and Analytical Chemistry, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
6
|
Zhang D, Ouyang Q, Hu Z, Lu S, Quan W, Li P, Chen Y, Li S. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol 2021; 173:591-606. [PMID: 33508359 DOI: 10.1016/j.ijbiomac.2021.01.157] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Chitosan-based thermosensitive hydrogels have been widely used in drug delivery and tissue engineering, but their poor bioactivity has limited their further applications. Integral active oyster peptide microspheres (OPM) with an average particle diameter of 3.9 μm were prepared with high encapsulation efficiency (72.8%) and loading capacity (11.9%), exhibiting desirable sustained release effects. Using catechol functionalized chitosan (CS-C) as the polymeric matrix, OPM as the filler, and β-sodium glycerophosphate (β-GP) as a thermal sensitizer, the thermosensitive hydrogel CS-C/OPM/β-GP was prepared. Besides, the application of the hydrogel on wound healing was studied, and its biosafety was evaluated. The results of cell migration in vitro showed that the cell migration rate of CS-C/OPM/β-GP reached 97.47 ± 5.41% within 48 h, indicating that the hydrogel accelerated the migration of L929 cells. As demonstrated in the mouse skin wound experiment, CS-C/OPM/β-GP hydrogel not only inhibited the aggregation of diversified inflammatory cells and accelerated the generation of collagen fibers and new blood vessels of the wound, but also enhanced the synthesis of total protein (TP) in granulation tissue, and up-regulated the expression of Ki-67 and VEGF in the injury, thereby achieving fast wound healing. Safety evaluation results showed that CS-C/OPM/β-GP hydrogel was not cytotoxic to L929 cells, and the hemolysis ratio was less than 5% within 1 mg/mL. In conclusion, CS-C/OPM/β-GP hydrogel is expected as a promising medical dressing for wound healing.
Collapse
Affiliation(s)
- Dongying Zhang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China
| | - Qianqian Ouyang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Sitong Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiyan Quan
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Puwang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Yu Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sidong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Chitosan-Based Thermo-Sensitive Hydrogel Loading Oyster Peptides for Hemostasis Application. MATERIALS 2020; 13:ma13215038. [PMID: 33182319 PMCID: PMC7664874 DOI: 10.3390/ma13215038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/01/2023]
Abstract
Uncontrolled massive hemorrhage is one of the principal causes of death in trauma emergencies. By using catechol-modified chitosan (CS-C) as the matrix material and β glycerol phosphate (β-GP) as a thermo-sensitive agent, chitosan-based thermo-sensitive hydrogel loading oyster peptides (CS-C/OP/β-GP) were prepared at physiological temperature. The hemostatic performance of CS-C/OP/β-GP hydrogel was tested in vivo and in vitro, and its biological safety was evaluated. The results showed that the in vitro coagulation time and blood coagulation index of CS-C/OP/β-GP hydrogel were better than those of a commercial gelatin sponge. Notably, compared with the gelatin sponge, CS-C/OP/β-GP hydrogel showed that the platelet adhesion and erythrocyte adsorption rates were 38.98% and 95.87% higher, respectively. Additionally, the hemostasis time in mouse liver injury was shortened by 19.5%, and the mass of blood loss in the mouse tail amputation model was reduced by 18.9%. The safety evaluation results demonstrated that CS-C/OP/β-GP had no cytotoxicity to L929 cells, and the hemolysis rates were less than 5% within 1 mg/mL, suggesting good biocompatibility. In conclusion, our results indicate that CS-C/OP/β-GP is expected to be a promising dressing in the field of medical hemostasis.
Collapse
|