1
|
Huang X, Liang F, Huang B, Luo H, Shi J, Wang L, Peng J, Chen Y. On-chip real-time impedance monitoring of hiPSC-derived and artificial basement membrane-supported endothelium. Biosens Bioelectron 2023; 235:115324. [PMID: 37201240 DOI: 10.1016/j.bios.2023.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Recent advances have shown the high sensibility of electrochemical impedance spectroscopy in real-time monitoring of cell barriers on a chip. Here, we applied this method to the investigation of human induced pluripotent stem cell (hiPSC) derived and artificial basement membrane (ABM) supported endothelial barrier. The ABM was obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers. The hiPSCs were differentiated into brain microvascular endothelial cells (BMECs) and then plated on the ABM. After incubation for two days, the ABM-BMEC assembly was placed as a tissue insert into a microfluidic device for culture and real-time impedance monitoring over days. We found a significantly enhanced stability of the BMEC barrier in a serum-free and bromodeoxyuridine (BrdU) containing culture medium compared to the conventional culture due to the restricted cell proliferation. We also found that the BMEC barrier was sensitive to stimuli such as thrombin and that the change of the barrier impedance was mainly due to the change of the cell layer resistance. We can thus advocate this method to investigate the integrity of the cell barrier and the barrier-based assays.
Collapse
Affiliation(s)
- Xiaochen Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Feng Liang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Boxin Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Haoyue Luo
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| |
Collapse
|
2
|
Zhou SF, Gopalakrishnan S, Xu YH, Yang J, Lam YW, Pang SW. A Unidirectional Cell Switching Gate by Engineering Grating Length and Bending Angle. PLoS One 2016; 11:e0147801. [PMID: 26821058 PMCID: PMC4731054 DOI: 10.1371/journal.pone.0147801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022] Open
Abstract
On a microgrooved substrate, cells migrate along the pattern, and at random positions, reverse their directions. Here, we demonstrate that these reversals can be controlled by introducing discontinuities to the pattern. On "V-shaped grating patterns", mouse osteogenic progenitor MC3T3-E1 cells reversed predominately at the bends and the ends. The patterns were engineered in a way that the combined effects of angle- and length-dependence could be examined in addition to their individual effects. Results show that when the bend was placed closer to one end, migration behaviour of cells depends on their direction of approach. At an obtuse bend (135°), more cells reversed when approaching from the long segment than from the short segment. But at an acute bend (45°), this relationship was reversed. Based on this anisotropic behaviour, the designed patterns effectively allowed cells to move in one direction but blocked migrations in the opposing direction. This study demonstrates that by the strategic placement of bends and ends on grating patterns, we can engineer effective unidirectional switching gates that can control the movement of adherent cells. The knowledge developed in this study could be utilised in future cell sorting or filtering platforms without the need for chemotaxis or microfluidic control.
Collapse
Affiliation(s)
- Shu Fan Zhou
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Singaram Gopalakrishnan
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuan Hao Xu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Jie Yang
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yun Wah Lam
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
3
|
Santoro F, Schnitker J, Panaitov G, Offenhäusser A. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. NANO LETTERS 2013; 13:5379-5384. [PMID: 24088026 DOI: 10.1021/nl402901y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The quality of the recording and stimulation capabilities of multielectrode arrays (MEAs) substantially depends on the interface properties and the coupling of the cell with the underlying electrode area. The purpose of this work was the investigation of a three-dimensional nanointerface, enabling simultaneous guidance and recording of electrogenic cells (HL-1) by utilizing nanostructures with a mushroom shape on MEAs.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich D-52425 Jülich, Germany
| | | | | | | |
Collapse
|