1
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
2
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
3
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Erdman N, Schmidt L, Yang X, Wei L, Xi T, Shao Y, Gao BZ. A microfabricated on-chip approach to the micropipette growth cone-turning assay. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa8a42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Affiliation(s)
- Suwan N. Jayasinghe
- BioPhysics Group, UCL Centre for Stem Cells and Regenerative Medicine; UCL Department of Mechanical Engineering and UCL Institute of Healthcare Engineering; University College London; Torrington Place London WC1E 7JE United Kingdom
| |
Collapse
|
6
|
|
7
|
Abstract
The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.
Collapse
Affiliation(s)
- Ashkan Shafiee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; ,
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; ,
| |
Collapse
|
8
|
Green DW, Lee JS, Jung HS. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration. Front Physiol 2016; 7:6. [PMID: 26903872 PMCID: PMC4751709 DOI: 10.3389/fphys.2016.00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 11/18/2022] Open
Abstract
The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a "water-tight" barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.
Collapse
Affiliation(s)
- David W. Green
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of DentistrySeoul, South Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong KongHong Kong, Hong Kong
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of DentistrySeoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of DentistrySeoul, South Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
9
|
Huang CY, Chang WC, Yeh KC, Tseng HY, Hsu MS, Chen JY, Wei ZH. Honeycomb-shaped magnetic multilayer thin films for cell trapping. RSC Adv 2016. [DOI: 10.1039/c6ra01757f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Honeycomb-shaped magnetic thin films with domain wall (DW) pinning geometry are designed to actively trap magnetically labeled cells.
Collapse
Affiliation(s)
- Chen-Yu Huang
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu City
- Taiwan
| | - Wei-Chieh Chang
- Department of Neurosurgery
- Show Chwan Memorial Hospital
- Changhua
- Taiwan
| | - Kun-Chieh Yeh
- Department of Surgery
- Taoyuan Armed Forces General Hospital
- Taiwan
| | - Han-Yi Tseng
- Department of Ophthalmology
- Kaohsiung Medical University Hospital
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Ming-Shinn Hsu
- Department of Obstetrics and Gynecology
- Ching-Kuo Campus of Min-Sheng Hospital
- Taoyuan
- Taiwan
| | - Jiann-Yeu Chen
- Center of Nanoscience and Nanotechnology
- National Chung Hsing University
- Taichung
- Taiwan
| | - Zung-Hang Wei
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu City
- Taiwan
| |
Collapse
|
10
|
Wei L, Sweeney AJ, Sheng L, Fang Y, Kindy MS, Xi T, Gao BZ. Single-neuron axonal pathfinding under geometric guidance: low-dose-methylmercury developmental neurotoxicity test. LAB ON A CHIP 2014; 14:3564-71. [PMID: 25041816 PMCID: PMC4148692 DOI: 10.1039/c4lc00723a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Because the nervous system is most vulnerable to toxicants during development, there is a crucial need for a highly sensitive developmental-neurotoxicity-test model to detect potential toxicants at low doses. We developed a lab-on-chip wherein single-neuron axonal pathfinding under geometric guidance was created using soft lithography and laser cell-micropatterning techniques. After coating the surface with L1, an axon-specific member of the Ig family of cell adhesion molecules (CAMs), and optimizing microunit geometric parameters, we introduced low-dose methylmercury, a well-known, environmentally significant neurotoxicant, in the shared medium. Its developmental neurotoxicity was evaluated using a novel axonal pathfinding assay including axonal turning and branching rates at turning points in this model. Compared to the conventional neurite-outgrowth assay, this model's detection threshold for low-dose methylmercury was 10-fold more sensitive at comparable exposure durations. These preliminary results support study of developmental effects of known and potential neurotoxicants on axon pathfinding. This novel assay model would be useful to study neuronal disease mechanisms at the single-cell level. To our knowledge, the potential of methylmercury chloride to cause acute in vitro developmental neurotoxicity (DNT) at such a low dosage has not been reported. This is the first DNT test model with high reproducibility to use single-neuron axonal pathfinding under precise geometric guidance.
Collapse
Affiliation(s)
- Lina Wei
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Andrew J. Sweeney
- Biophotonics Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Liyuan Sheng
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Yu Fang
- Division of Standardization & Science Research, Institute for Medical Devices Control, National Institute for Food and Drug Control, Beijing 100050, China
| | - Mark S. Kindy
- Biophotonics Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Departments of Neurosciences and Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29466, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29403, USA
| | - Tingfei Xi
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Bruce Z. Gao
- Biophotonics Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|