1
|
He J, Zhou C, Xu X, Zhou Z, Danoy M, Shinohara M, Xiao W, Zhu D, Zhao X, Feng X, Mao Y, Sun W, Sakai Y, Yang H, Pang Y. Scalable Formation of Highly Viable and Functional Hepatocellular Carcinoma Spheroids in an Oxygen-Permeable Microwell Device for Anti-Tumor Drug Evaluation. Adv Healthc Mater 2022; 11:e2200863. [PMID: 35841538 DOI: 10.1002/adhm.202200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Indexed: 01/27/2023]
Abstract
For high-throughput anti-cancer drug screening, microwell arrays may serve as an effective tool to generate uniform and scalable tumor spheroids. However, microwell arrays are commonly anchored in non-oxygen-permeable culture plates, leading to limited oxygen supply for avascular spheroids. Herein, a polydimethylsiloxane (PDMS)-based oxygen-permeable microwell device is introduced for generating highly viable and functional hepatocellular carcinoma (HCC) spheroids. The PDMS sheets at the bottom of the microwell device provide a high flux of oxygen like in vivo neighboring hepatic sinusoids. Owing to the better oxygen supply, the generated HepG2 spheroids are larger in size and exhibit higher viability and proliferation with less cell apoptosis and necrosis. These spheroids also exhibit lower levels of anaerobic cellular respiration and express higher levels of liver-related functions. In anti-cancer drug testing, spheroids cultured in PDMS plates show a significantly stronger resistance against doxorubicin because of the stronger stem-cell and multidrug resistance phenotype. Moreover, higher expression of vascular endothelial growth factor-A produces a stronger angiogenesis capability of the spheroids. Overall, compared to the spheroids cultured in conventional non-oxygen-permeable plates, these spheroids can be used as a more favorable model for early-stage HCCs and be applied in high-throughput anti-cancer drug screening.
Collapse
Affiliation(s)
- Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Chang Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Xiaolei Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China.,Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Zhenzhen Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-033, Japan
| | - Marie Shinohara
- Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM UMR-S1138, CNRS SNC5014, University of Paris, Paris, 75006, France
| | - Dong Zhu
- Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Xiuying Zhao
- Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Xiaobin Feng
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Dongcheng District, Beijing, 100005, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China.,Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-033, Japan
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Dongcheng District, Beijing, 100005, P. R. China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Tuerxun K, He J, Ibrahim I, Yusupu Z, Yasheng A, Xu Q, Tang R, Aikebaier A, Wu Y, Tuerdi M, Nijiati M, Zou X, Xu T. Bioartificial livers: a review of their design and manufacture. Biofabrication 2022; 14. [PMID: 35545058 DOI: 10.1088/1758-5090/ac6e86] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver support systems, such as artificial livers (ALs) and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next generation BALs for large scale clinical applications.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Jianyu He
- Department of Mechanical Engineering, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Irxat Ibrahim
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Zainuer Yusupu
- Department of Ultrasound, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Abudoukeyimu Yasheng
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Qilin Xu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Ronghua Tang
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Aizemaiti Aikebaier
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Yuanquan Wu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Maimaitituerxun Tuerdi
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Mayidili Nijiati
- Medical imaging center, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Xiaoguang Zou
- Hospital Organ, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Tao Xu
- Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, CHINA
| |
Collapse
|
3
|
Natural Scaffolds Used for Liver Regeneration: A Narrative Update. Stem Cell Rev Rep 2022; 18:2262-2278. [PMID: 35320512 DOI: 10.1007/s12015-022-10362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
Annually chronic liver diseases cause two million death worldwide. Although liver transplantation (LT) is still considered the best therapeutic option, the limited number of donated livers and lifelong side effects of LT has led researchers to seek alternative therapies. Tissue engineering (TE) as a promising method is considered for liver repair and regeneration. TE uses natural or synthetic scaffolds, functional somatic cells, multipotent stem cells, and growth factors to develop new organs. Biological scaffolds are notable in TE because of their capacity to mimic extracellular matrices, biodegradability, and biocompatibility. Moreover, natural scaffolds are classified based on their source and function in three separate groups. Hemostat-based scaffolds as the first group were reviewed for their application in coagulation in liver injury or surgery. Furthermore, recent studies showed improvement in the function of biological hydrogels in liver regeneration and vascularity. In addition, different applications of natural scaffolds were discussed and compared with synthetic scaffolds. Finally, we focused on the efforts to improve the performance of decellularized extracellular matrixes for liver implantation.
Collapse
|
4
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
5
|
Yang G, Mahadik B, Mollot T, Pinsky J, Jones A, Robinson A, Najafali D, Rivkin D, Katsnelson J, Piard C, Fisher JP. Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Eng Part A 2020; 26:1369-1377. [PMID: 33054685 DOI: 10.1089/ten.tea.2020.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Liver disease and the subsequent loss of liver function is an enormous clinical challenge. A severe shortage of donor liver tissue greatly limits patients' options for a timely transplantation. Tissue engineering approaches offer a promising alternative to organ transplantation by engineering artificial implantable tissues. We have established a platform of cell-laden microbeads as basic building blocks to assemble macroscopic tissues via different mechanisms. This modular fabrication strategy possesses great potential for liver tissue engineering in a bottom-up manner. In this study, we encapsulated human hepatocytes into microbeads presenting a favorable microenvironment consisting of collagen and mesenchymal stem cells, and then we perfused the beads in a three-dimensional printed tubular perfusion bioreactor that promoted oxygen and medium diffusion to the impregnated cells. We noted high cell vitality and retention of parenchymal cell functionality for up to 30 days in this culture system. Our engineering-based approach led to the advancement in tissue size and long-term functionality of an artificial liver tissue in vitro.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Trevor Mollot
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Julia Pinsky
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Athenia Jones
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Alexis Robinson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Najafali
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Rivkin
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Jenny Katsnelson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Charlotte Piard
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
He J, Pang Y, Yang H, Montagne K, Shinohara M, Mao Y, Sun W, Sakai Y. Modular assembly-based approach of loosely packing co-cultured hepatic tissue elements with endothelialization for liver tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1400. [PMID: 33313145 PMCID: PMC7723527 DOI: 10.21037/atm-20-1598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background In liver tissue engineering, co-culturing hepatocytes with typical non-parenchymal hepatic cells to form cell aggregates is available to mimic the in vivo microenvironment and promote cell biological functions. With a modular assembly approach, endothelialized hepatic cell aggregates can be packed for perfusion culture, which enables the construction of large-scale liver tissues. Since tightly packed aggregates tend to fuse with each other and block perfusion flows, a loosely packed mode was introduced in our study. Methods Using an oxygen-permeable polydimethylsiloxane (PDMS)-based microwell device, highly dense endothelialized hepatic cell aggregates were generated as hepatic tissue elements by co-culturing hepatocellular carcinoma (HepG2) cells, Swiss 3T3 cells, and human umbilical vein endothelial cells (HUVECs). The co-cultured aggregates were then harvested and applied in a PDMS-fabricated bioreactor for 10 days of perfusion culture. To maintain appropriate interstitial spaces for stable perfusion, biodegradable poly-L-lactic acid (PLLA) scaffold fibers were used and mixed with the aggregates, forming a loosely packed mode. Results In a microwell co-culture, Swiss 3T3 cells significantly contributed to the formation of hepatic cell aggregates. HUVECs developed a peripheral distribution in aggregates for endothelialization. In the perfusion culture, compared with pure HepG2 aggregates, HepG2/Swiss 3T3/HUVECs co-cultured aggregates exhibited a higher level of cell proliferation and liver-specific function expression (i.e., glucose consumption and albumin secretion). Under the loosely packed mode, co-cultured aggregates showed a characteristic histological morphology with cell migration and adhesion to fibers. The assembled hepatic tissue elements were obtained with 32% of in vivo cell density. Conclusions In a co-culture of HepG2, Swiss 3T3, and HUVECs, Swiss 3T3 cells were observed to be beneficial for the formation of endothelialized hepatic cell aggregates. Loosely packed aggregates enabled long-term perfusion culture with high viability and biological function. This study will guide us in constructing large-scale liver tissue models by way of aggregate-based modular assembly.
Collapse
Affiliation(s)
- Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA, USA
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Pang Y, Sutoko S, Wang Z, Horimoto Y, Montagne K, Horiguchi I, Shinohara M, Danoy M, Niino T, Sakai Y. Organization of liver organoids using Raschig ring-like micro-scaffolds and triple co-culture: Toward modular assembly-based scalable liver tissue engineering. Med Eng Phys 2019; 76:69-78. [PMID: 31883633 DOI: 10.1016/j.medengphy.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/26/2022]
Abstract
In order to address the remaining issues of fragile structure and insufficient mass transfer faced in modular assembly-based liver tissue engineering, a Raschig ring-like hollowed micro-scaffold was proposed and fabricated using poly-ε-caprolactone with 60% porosity and 11.4 mm2 effective surface area for cell immobilization. The method of cell inoculation, the types of cells for co-culture and the scalability of the proposed hollowed micro-scaffold in perfusion were all investigated to obtain an optimized organoid made of tissue modules. Extracellular matrix was found necessary to establish a hierarchical co-culture, and the triple co-culture of Human Hepatoma Hep G2 cells, liver sinusoid cell line TMNK-1 cells and fibroblasts (Swiss 3T3 cells) was recognized to be the most efficient to obtain higher cell attachment, proliferation and hepatic function. The equipped intersecting hollow channels provided in the micro-scaffold functioned as flow paths to promote mass transfer to the immobilized cells after the modules have been randomly packed into a bioreactor for perfusion culture, and resulted in enhanced albumin production and high cellular viability. Cell density comparable to those found in vivo were obtained in the perfused construct, which also maintained its rigid structure. Those results suggest that modular tissues made with hollowed micro-scaffold-based organoids hold great potential for scaling up tissue engineered constructs towards implantation.
Collapse
Affiliation(s)
- Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Room A730, Lee Shau Kee science and Technology Building Haidian District, Beijing 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China.
| | - Stephanie Sutoko
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Zitong Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yohei Horimoto
- Graduate School of Engineering, Shibaura Institute of Technology, Shibaura 3-9-14, Minato-ku, Tokyo 108-8548, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| | - Ikki Horiguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - Marie Shinohara
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| | - Toshiki Niino
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| |
Collapse
|
8
|
Bizzaro D, Russo FP, Burra P. New Perspectives in Liver Transplantation: From Regeneration to Bioengineering. Bioengineering (Basel) 2019; 6:E81. [PMID: 31514475 PMCID: PMC6783848 DOI: 10.3390/bioengineering6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Advanced liver diseases have very high morbidity and mortality due to associated complications, and liver transplantation represents the only current therapeutic option. However, due to worldwide donor shortages, new alternative approaches are mandatory for such patients. Regenerative medicine could be the more appropriate answer to this need. Advances in knowledge of physiology of liver regeneration, stem cells, and 3D scaffolds for tissue engineering have accelerated the race towards efficient therapies for liver failure. In this review, we propose an update on liver regeneration, cell-based regenerative medicine and bioengineering alternatives to liver transplantation.
Collapse
Affiliation(s)
- Debora Bizzaro
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Section, University/Hospital Padua, 35128 Padua, Italy.
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Section, University/Hospital Padua, 35128 Padua, Italy.
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Section, University/Hospital Padua, 35128 Padua, Italy.
| |
Collapse
|
9
|
Hauptmann N, Lian Q, Ludolph J, Rothe H, Hildebrand G, Liefeith K. Biomimetic Designer Scaffolds Made of D,L-Lactide- ɛ-Caprolactone Polymers by 2-Photon Polymerization. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:167-186. [PMID: 30632460 PMCID: PMC6589497 DOI: 10.1089/ten.teb.2018.0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
Abstract
IMPACT STATEMENT In tissue engineering (TE), the establishment of cell targeting materials, which mimic the conditions of the physiological extracellular matrix (ECM), seems to be a mission impossible without advanced materials and fabrication techniques. With this in mind we established a toolbox based on (D,L)-lactide-ɛ-caprolactone methacrylate (LCM) copolymers in combination with a nano-micromaskless lithography technique, the two-photon polymerization (2-PP) to mimic the hierarchical structured and complex milieu of the natural ECM. To demonstrate the versatility of this toolbox, we choose two completely different application scenarios in bone and tumor TE to show the high potential of this concept in therapeutic and diagnostic application.
Collapse
Affiliation(s)
- Nicole Hauptmann
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Qilin Lian
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Johanna Ludolph
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Holger Rothe
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Gerhard Hildebrand
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Klaus Liefeith
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| |
Collapse
|
10
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
11
|
Annamalai RT, Naik T, Prout H, Putnam AJ, Stegemann JP. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants. ACTA ACUST UNITED AC 2018. [PMID: 29536947 DOI: 10.1088/1748-605x/aab66f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microtissues created from the protein fibrin and containing embedded cells can be used in modular tissue engineering approaches to create larger, hierarchical and complex tissue structures. In this paper we demonstrate an emulsification-based method for the production of such fibrin microtissues containing fibroblasts (FB) and endothelial cells (EC) and designed to promote tissue vascularization. Surfactants can be beneficial in the microtissue fabrication process to reduce aggregation and to facilitate recovery of microtissues from the emulsion, thereby increasing yield. The nonionic surfactants Pluronic L101® and Tween 20® both increased microtissue yield in a dose-dependent fashion. Cell viability of both human FB and human EC remained high after exposure to low surfactant concentrations but decreased with increasing surfactant concentration. L101 was markedly less cytotoxic than Tween, and therefore was the surfactant of choice in this application. The yield of cell-laden microtissues increased with increasing L101 concentration, though microtissues were slightly larger at low concentrations. The total metabolic activity of cells in retrieved microtissues was bimodal and was highest at an L101 concentration of 0.10% wt/vol. Network formation by EC in microtissues embedded in surrounding 3D fibrin hydrogels was also most extensive in microtissues made using an L101 concentration of 0.10% wt/vol. Minimally-invasive delivery of microtissue populations was demonstrated by injection through a standard 18 G needle, and the ability to form robust endothelial networks was maintained in injected microtissue populations. Taken together, these data demonstrate a facile emulsification-based method to create modular, cell-laden hydrogel microtissues that can be delivered by injection to promote tissue regeneration. Appropriate selection of the type and concentration of surfactant used in the process can be used to maximize viability and specialized function of the embedded cells. Such biomaterial-based microtissues may have broad applicability in cell-based therapies and tissue engineering.
Collapse
|
12
|
Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|