1
|
Carnieri MV, Garcia DDF, Voltolini R, Volpato N, Mafra M, Bernardelli EA, Stimamiglio MA, Rebelatto CK, Correa A, Berti LF, Marcon BH. Cytocompatible and osteoconductive silicon oxycarbide glass scaffolds 3D printed by DLP: a potential material for bone tissue regeneration. Front Bioeng Biotechnol 2024; 11:1297327. [PMID: 38239914 PMCID: PMC10794595 DOI: 10.3389/fbioe.2023.1297327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Bone lesions affect individuals of different age groups, compromising their daily activities and potentially leading to prolonged morbidity. Over the years, new compositions and manufacturing technologies were developed to offer customized solutions to replace injured tissue and stimulate tissue regeneration. This work used digital light processing (DPL) technology for three-dimensional (3D) printing of porous structures using pre-ceramic polymer, followed by pyrolysis to obtain SiOC vitreous scaffolds. The SiOC scaffolds produced had an amorphous structure (compatible with glass) with an average porosity of 72.69% ± 0.99, an average hardness of 935.1 ± 71.0 HV, and an average maximum flexural stress of 7.8 ± 1.0 MPa, similar to cancellous bone tissue. The scaffolds were not cytotoxic and allowed adult stem cell adhesion, growth, and expansion. After treatment with osteoinductive medium, adult stem cells in the SiOC scaffolds differentiated to osteoblasts, assuming a tissue-like structure, with organization in multiple layers and production of a dense fibrous matrix rich in hydroxyapatite. The in vitro analyses supported the hypothesis that the SiOC scaffolds produced in this work were suitable for use as a bone substitute for treating critically sized lesions, with the potential to stimulate the gradual process of regeneration of the native tissue. The data obtained stimulate the continuity of studies with the SiOC scaffolds developed in this work, paving the way for evaluating safety and biological activity in vivo.
Collapse
Affiliation(s)
- Matheus Versão Carnieri
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Daniele de Freitas Garcia
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | - Rafael Voltolini
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Neri Volpato
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Marcio Mafra
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Euclides Alexandre Bernardelli
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | | | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
- Confocal and Eletronic Microscopy Facility (RPT07C), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
2
|
Sarraf F, Churakov SV, Clemens F. Preceramic Polymers for Additive Manufacturing of Silicate Ceramics. Polymers (Basel) 2023; 15:4360. [PMID: 38006084 PMCID: PMC10674695 DOI: 10.3390/polym15224360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The utilization of preceramic polymers (PCPs) to produce both oxide and non-oxide ceramics has caught significant interest, owing to their exceptional characteristics. Diverse types of polymer-derived ceramics (PDCs) synthesized by using various PCPs have demonstrated remarkable characteristics such as exceptional thermal stability, resistance to corrosion and oxidation at elevated temperatures, biocompatibility, and notable dielectric properties, among others. The application of additive manufacturing techniques to produce PDCs opens up new opportunities for manufacturing complex and unconventional ceramic structures with complex designs that might be challenging or impossible to achieve using traditional manufacturing methods. This is particularly advantageous in industries like aerospace, automotive, and electronics. In this review, various categories of preceramic polymers employed in the synthesis of polymer-derived ceramics are discussed, with a particular focus on the utilization of polysiloxane and polysilsesquioxanes to generate silicate ceramics. Further, diverse additive manufacturing techniques adopted for the fabrication of polymer-derived silicate ceramics are described.
Collapse
Affiliation(s)
- Fateme Sarraf
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute of Geological Sciences, University of Bern, Hochschulstrasse 6, CH-3012 Bern, Switzerland;
| | - Sergey V. Churakov
- Institute of Geological Sciences, University of Bern, Hochschulstrasse 6, CH-3012 Bern, Switzerland;
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Frank Clemens
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
3
|
Kastrinaki G, Pechlivani EM, Gkekas I, Kladovasilakis N, Gkagkari E, Petrakis S, Asimakopoulou A. Fabrication and Optimization of 3D-Printed Silica Scaffolds for Neural Precursor Cell Cultivation. J Funct Biomater 2023; 14:465. [PMID: 37754879 PMCID: PMC10531779 DOI: 10.3390/jfb14090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
The latest developments in tissue engineering scaffolds have sparked a growing interest in the creation of controlled 3D cellular structures that emulate the intricate biophysical and biochemical elements found within versatile in vivo microenvironments. The objective of this study was to 3D-print a monolithic silica scaffold specifically designed for the cultivation of neural precursor cells. Initially, a preliminary investigation was conducted to identify the critical parameters pertaining to calcination. This investigation aimed to produce sturdy and uniform scaffolds with a minimal wall-thickness of 0.5 mm in order to mitigate the formation of cracks. Four cubic specimens, with different wall-thicknesses of 0.5, 1, 2, and 4 mm, were 3D-printed and subjected to two distinct calcination profiles. Thermogravimetric analysis was employed to examine the freshly printed material, revealing critical temperatures associated with increased mass loss. Isothermal steps were subsequently introduced to facilitate controlled phase transitions and reduce crack formation even at the minimum wall thickness of 0.5 mm. The optimized structure stability was obtained for the slow calcination profile (160 min) then the fast calcination profile (60 min) for temperatures up to 900 °C. In situ X-ray diffraction analysis was also employed to assess the crystal phases of the silicate based material throughout various temperature profiles up to 1200 °C, while scanning electron microscopy was utilized to observe micro-scale crack formation. Then, ceramic scaffolds were 3D-printed, adopting a hexagonal and spherical channel structures with channel opening of 2 mm, and subsequently calcined using the optimized slow profile. Finally, the scaffolds were evaluated in terms of biocompatibility, cell proliferation, and differentiation using neural precursor cells (NPCs). These experiments indicated proliferation of NPCs (for 13 days) and differentiation into neurons which remained viable (up to 50 days in culture). In parallel, functionality was verified by expression of pre- (SYN1) and post-synaptic (GRIP1) markers, suggesting that 3D-printed scaffolds are a promising system for biotechnological applications using NPCs.
Collapse
Affiliation(s)
- Georgia Kastrinaki
- Chemical Process Engineering Research Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.G.); (A.A.)
| | - Eleftheria-Maria Pechlivani
- Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.-M.P.); (N.K.)
| | - Ioannis Gkekas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (I.G.); (S.P.)
| | - Nikolaos Kladovasilakis
- Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.-M.P.); (N.K.)
| | - Evdokia Gkagkari
- Chemical Process Engineering Research Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.G.); (A.A.)
| | - Spyros Petrakis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (I.G.); (S.P.)
| | - Akrivi Asimakopoulou
- Chemical Process Engineering Research Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.G.); (A.A.)
| |
Collapse
|
4
|
Clarkson CM, Wyckoff C, Parvulescu MJ, Rueschhoff LM, Dickerson MB. UV-assisted direct ink writing of Si3N4/SiC preceramic polymer suspensions. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Memarian P, Pishavar E, Zanotti F, Trentini M, Camponogara F, Soliani E, Gargiulo P, Isola M, Zavan B. Active Materials for 3D Printing in Small Animals: Current Modalities and Future Directions for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23031045. [PMID: 35162968 PMCID: PMC8834768 DOI: 10.3390/ijms23031045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.
Collapse
Affiliation(s)
- Parastoo Memarian
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Francesca Camponogara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Elisa Soliani
- Engineering Department, King’s College, London WC2R 2LS, UK;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Maurizio Isola
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
- Correspondence:
| |
Collapse
|
6
|
Dasan A, Kraxner J, Grigolato L, Savio G, Elsayed H, Galusek D, Bernardo E. 3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder. J Funct Biomater 2022; 13:8. [PMID: 35076529 PMCID: PMC8788511 DOI: 10.3390/jfb13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of 'spongy' struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68-84%.
Collapse
Affiliation(s)
- Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Jozef Kraxner
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
| | - Luca Grigolato
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Hamada Elsayed
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Refractories, Ceramics and Building Materials Department, National Research Centre, El Buhouth Str., Cairo 12622, Egypt
| | - Dušan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Enrico Bernardo
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
| |
Collapse
|
7
|
Osteogenic Properties of 3D-Printed Silica-Carbon-Calcite Composite Scaffolds: Novel Approach for Personalized Bone Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22020475. [PMID: 33418865 PMCID: PMC7825124 DOI: 10.3390/ijms22020475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022] Open
Abstract
Carbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR. Biocompatibility analyses through 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) activity, hemolysis assay, and Ames test demonstrated excellent biocompatibility of both materials. A significant increase in the extracellular alkaline phosphatase (ALP) activity and expression of runt-related transcription factor (RUNX), ALP, osterix (OSX), and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes was observed in C-Bio scaffolds compared to those without carbon (Bio). Scanning electron microscopy (SEM) demonstrated excellent cell attachment on both material surfaces; however, the cellular layer on C-Bio fibers exhibited an apparent secretome activity. Based on our findings, graphene can improve cell adhesion, growth, and osteogenic differentiation of cAD-MSCs in vitro. This study proposed carbon as an additive for a novel three-dimensional (3D)-printable biocompatible scaffold which could become the key structural material for bone tissue reconstruction.
Collapse
|
8
|
Tang S, Yang L, Liu X, Li G, Jiang W, Fan Z. Direct ink writing additive manufacturing of porous alumina-based ceramic cores modified with nanosized MgO. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2020.07.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Zhou S, Mei H, Chang P, Lu M, Cheng L. Molecule editable 3D printed polymer-derived ceramics. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Francis A. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review. J Biomed Mater Res B Appl Biomater 2020; 109:744-764. [PMID: 33075186 DOI: 10.1002/jbm.b.34740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/17/2023]
Abstract
Preceramic organosilicon materials combining the properties of a polymer and an inorganic ceramic phase are of great interest to scientists working in biomedical sciences. The interdisciplinary nature of organosilicon polymers and their molecular structures, as well as their diversity of applications have resulted in an unprecedented range of devices and synergies cutting across unrelated fields in medicine and engineering. Organosilicon materials, especially the polysiloxanes, have a long history of industrial and medical uses in many versatile aspects as they can be easily fabricated into complex-shaped products using a wide variety of computer-aided or polymer manufacturing techniques. Thus far, intensive research activities have been mainly devoted to the processing of preceramic organosilicon polymers toward magnetic, electronic, structural, optical, and not biological applications. Herein we present innovative research studies and recent developments of preceramic organosilicon polymers at the interface with biological systems, displaying the versatility and multi-functionality of these materials. This article reviews recent research on preceramic organosilicon polymers and corresponding composites for bone tissue regeneration and medical engineering implants, focusing on three particular topics: (a) surface modifications to create tailorable and bioactive surfaces with high corrosion resistance and improved biological properties; (b) biological evaluations for specific applications, such as in glaucoma drainage devices, orthopedic implants, bone tissue regeneration, wound dressing, drug delivery systems, and antibacterial activity; and (c) in vitro and in vivo studies for cytotoxicity, genotoxicity, and cell viability. The interest in organosilicon materials stems from the fact that a vast array of these materials have complementary attributes that, when integrated appropriately with functional fillers and carefully controlled conditions, could be exploited either as polymeric Si-based composites or as organosilicon polymer-derived Si-based ceramic composites to tailor and optimize properties of the Si-based materials for various proposed applications.
Collapse
Affiliation(s)
- Adel Francis
- Department of Advanced Materials, Central Metallurgical R & D Institute (CMRDI), Helwan, Cairo, Egypt
| |
Collapse
|
11
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
12
|
Fu S, Du X, Zhu M, Tian Z, Wei D, Zhu Y. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. ACTA ACUST UNITED AC 2019; 14:065011. [PMID: 31484173 DOI: 10.1088/1748-605x/ab4166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA-SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA-SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA-SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA-SA scaffolds would be prospective for the treatment of bone defects.
Collapse
Affiliation(s)
- Shengyang Fu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, 438000, People's Republic of China. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Chen Y, Han P, Vandi LJ, Dehghan-Manshadi A, Humphry J, Kent D, Stefani I, Lee P, Heitzmann M, Cooper-White J, Dargusch M. A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:160-165. [DOI: 10.1016/j.msec.2018.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/01/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022]
|
14
|
Fu S, Liu W, Liu S, Zhao S, Zhu Y. 3D printed porous β-Ca 2SiO 4 scaffolds derived from preceramic resin and their physicochemical and biological properties. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:495-506. [PMID: 30034559 PMCID: PMC6052414 DOI: 10.1080/14686996.2018.1471653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Silicate bioceramic scaffolds are of great interest in bone tissue engineering, but the fabrication of silicate bioceramic scaffolds with complex geometries is still challenging. In this study, three-dimensional (3D) porous β-Ca2SiO4 scaffolds have been successfully fabricated from preceramic resin loaded with CaCO3 active filler by 3D printing. The fabricated β-Ca2SiO4 scaffolds had uniform interconnected macropores (ca. 400 μm), high porosity (>78%), enhanced mechanical strength (ca. 5.2 MPa), and excellent apatite mineralization ability. Importantly, the results showed that the increase of sintering temperature significantly enhanced the compressive strength and the scaffolds sintered at higher sintering temperature stimulated the adhesion, proliferation, alkaline phosphatase activity, and osteogenic-related gene expression of rat bone mesenchymal stem cells. Therefore, the 3D printed β-Ca2SiO4 scaffolds derived from preceramic resin and CaCO3 active fillers would be promising candidates for bone tissue engineering.
Collapse
Affiliation(s)
- Shengyang Fu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shiwei Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shichang Zhao
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Innovation Institute for Materials, Shanghai, P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang City, Hubei Province, China
| |
Collapse
|