1
|
Chew CH, Lee HL, Chen AL, Huang WT, Chen SM, Liu YL, Chen CC. Review of electrospun microtube array membrane (MTAM)-a novel new class of hollow fiber for encapsulated cell therapy (ECT) in clinical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35348. [PMID: 38247238 DOI: 10.1002/jbm.b.35348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 01/23/2024]
Abstract
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Amanda Lin Chen
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Shu-Mei Chen
- Division of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Gao L, Sun L, Qiu Y, Jiang Y, Luo H, Wang X, Yu H. Fabrication of hollow microtube arrays based on a femtosecond laser double-pulse multiphoton polymerization. OPTICS LETTERS 2023; 48:5495-5498. [PMID: 37910686 DOI: 10.1364/ol.502919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
Microtubes with widely varied dimensions and materials have great prospects in functional devices applied in microoptics, microrobot, and biomedicine. However, the fabrication of vertically protruding hollow microtubes with high diameter-to-thickness ratio is challenging and few reported. Femtosecond laser two-photon polymerization can solve this problem via point-by-point scanning or SLM-based parallel processing, but the low efficiency limits its high throughput fabrication. Here, we report a novel, to the best of our knowledge, femtosecond laser double-pulse multiphoton polymerization approach for high efficiency fabrication of hollow microtube arrays. We established a two-aperture laser beam reshaping system to generate a circular beam via two rounds of Fresnel diffraction. Based on the unique laser energy distribution, hollow microtubes with high diameter-to-thickness ratio can be generated by two successively laser pulses exposure, which can improve the fabrication efficiency significantly. With the optimized parameters, we can achieve repeatable and uniform microtube array fabrication in large scale, and the yield can be 94.9%. Defocus testing showed that the proposed approach has a high range of focusing tolerance. The proposed microtube fabrication approach is meaningful in providing some enlightenment for researchers in the field of microfabrication.
Collapse
|
3
|
Topographical cues of PLGA membranes modulate the behavior of hMSCs, myoblasts and neuronal cells. Colloids Surf B Biointerfaces 2023; 222:113070. [PMID: 36495697 DOI: 10.1016/j.colsurfb.2022.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Biomaterial surface modification through the introduction of defined and repeated patterns of topography helps study cell behavior in response to defined geometrical cues. The lithographic molding technique is widely used for conferring biomaterial surface microscale cues and enhancing the performance of biomedical devices. In this work, different master molds made by UV mask lithography were used to prepare poly (D,L-lactide-co-glycolide) - PLGA micropatterned membranes to present different features of topography at the cellular interface: channels, circular pillars, rectangular pillars, and pits. The effects of geometrical cues were investigated on different cell sources, such as neuronal cells, myoblasts, and stem cells. Morphological evaluation revealed a peculiar cell arrangement in response to a specific topographical stimulus sensed over the membrane surface. Cells seeded on linear-grooved membranes showed that this cue promoted elongated cell morphology. Rectangular and circular pillars act instead as discontinuous cues at the cell-membrane interface, inducing cell growth in multiple directions. The array of pits over the surface also highlighted the precise spatiotemporal organization of the cell; they grew between the interconnected membrane space within the pits, avoiding the microscale hole. The overall approach allowed the evaluation of the responses of different cell types adhered to various surface patterns, build-up on the same polymeric membrane, and disclosing the effect of specific topographical features. We explored how various microtopographic signals play distinct roles in different cells, thus affecting cell adhesion, migration, differentiation, cell-cell interactions, and other metabolic activities.
Collapse
|
4
|
Mantecón-Oria M, Rivero MJ, Diban N, Urtiaga A. On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: Pitfalls, progress, and future perspectives. Front Bioeng Biotechnol 2022; 10:1056162. [PMID: 36483778 PMCID: PMC9723404 DOI: 10.3389/fbioe.2022.1056162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 μm) with higher porosities and surface pore sizes of 1-2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María J. Rivero
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Nazely Diban
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ane Urtiaga
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
5
|
Camponogara F, Zanotti F, Trentini M, Tiengo E, Zanolla I, Pishavar E, Soliani E, Scatto M, Gargiulo P, Zambito Y, De Luca S, Ferroni L, Zavan B. Biomaterials for Regenerative Medicine in Italy: Brief State of the Art of the Principal Research Centers. Int J Mol Sci 2022; 23:8245. [PMID: 35897825 PMCID: PMC9368060 DOI: 10.3390/ijms23158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.
Collapse
Affiliation(s)
- Francesca Camponogara
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Ilaria Zanolla
- Medical Sciences Department, University of Ferrara, 44121 Ferrara, Italy;
| | - Elham Pishavar
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elisa Soliani
- Bioengineering Department, Imperial College London, London SW7 2BX, UK;
| | - Marco Scatto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Ylenia Zambito
- Chemical Department, University of Pisa, 56124 Pisa, Italy;
| | - Stefano De Luca
- Unit of Naples, Institute of Applied Sciences and Intelligent Systems, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy;
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| |
Collapse
|
6
|
Chen SM, Hsu TC, Chew CH, Huang WT, Chen AL, Lin YF, Eddarkaoui S, Buee L, Chen CC. Microtube Array Membrane Encapsulated Cell Therapy: A Novel Platform Technology Solution for Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:6855. [PMID: 35743295 PMCID: PMC9224941 DOI: 10.3390/ijms23126855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is the most frequent form of dementia in aging population and is presently the world's sixth largest cause of mortality. With the advancement of therapies, several solutions have been developed such as passive immunotherapy against these misfolded proteins, thereby resulting in the clearance. Within this segment, encapsulated cell therapy (ECT) solutions that utilize antibody releasing cells have been proposed with a multitude of techniques under development. Hence, in this study, we utilized our novel and patented Microtube Array Membranes (MTAMs) as an encapsulating platform system with anti-pTau antibody-secreting hybridoma cells to study the impact of it on Alzheimer's disease. In vivo results revealed that in the water maze, the mice implanted with hybridoma cell MTAMs intracranially (IN) and subcutaneously (SC) showed improvement in the time spent the goal quadrant and escape latency. In passive avoidance, hybridoma cell loaded MTAMs (IN and SC) performed significantly well in step-through latency. At the end of treatment, animals with hybridoma cell loaded MTAMs had lower phosphorylated tau (pTau) expression than empty MTAMs had. Combining both experimental results unveiled that the clearance of phosphorylated tau might rescue the cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Chin Hsu
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Chee-Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Amanda Lin Chen
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11052, Taiwan;
| | - Sabiha Eddarkaoui
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
| | - Luc Buee
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
- NeuroTMU, Lille International Laboratory, Université de Lille, 59000 Lille, France
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11052, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
7
|
Microtube Array Membrane Hollow Fiber Assay (MTAM-HFA)—An Accurate and Rapid Potential Companion Diagnostic and Pharmacological Interrogation Solution for Cancer Immunotherapy (PD-1/PD-L1). Biomolecules 2022; 12:biom12040480. [PMID: 35454072 PMCID: PMC9027612 DOI: 10.3390/biom12040480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is one of the most promising forms of cancer treatment. In particular, immune checkpoint blockers (ICBs) represent some of the leading candidates which many drug developers have heavily invested in. During pre-clinical development and prior to human clinical trials, animal tests are a critical component for determining the safety and efficacy of newly developed ICBs for cancer treatment. In this study, we strive to demonstrate the feasibility of using hollow fiber assay microtube array membrane (MTAM-HFA) in the screening of anti-cancer ICBs. The MTAM-HFA process was carried out by encapsulating peripheral blood mononuclear cells (PBMCs) and the target cancer cells (cell lines or primary cells) and subcutaneously implanting them into Balb/C mice. At predetermined time points combination regimens of PD-1/PD-L1+ were administered accordingly and at a predetermined time point, the MTAMs were retrieved, and cell viability assays were carried out. The outcomes of the MTAM-HFA were compared against the clinical outcome of patients. Clinical comparison demonstrated excellent correlation between the screening outcome of MTAM-HFA of PD-1/PD-L1+ combination therapy and the clinical outcome of the lung cancer patients. Basic cell studies revealed that the utilization of MTAM-HFA in PD-1/PD-L1+ combination therapy revealed enhanced T-cell activity upon the administration of the PD-1/PD-L1 drug; thereby resulting in the reduction of tumor cell viability by up to 70%, and the cytotoxic effects by 82%. The outcome was echoed in the in vivo cell studies. This suggested that the MTAM-HFA system is suitable for use in PD-1/PD-L1+ screening and the accuracy, rapidity and cost effectiveness made it extremely suitable for application as a companion diagnostic system in both personalized medicine for cancer treatment and could potentially be applied to screen for candidate compounds in the development of next generation PD-1/PD-L1+ combination therapies.
Collapse
|
8
|
Morelli S, Piscioneri A, Salerno S, De Bartolo L. Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering. Cells Tissues Organs 2021; 211:447-476. [PMID: 33849029 DOI: 10.1159/000511680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, CNR-ITM, Rende, Italy
| |
Collapse
|
9
|
Chew CH, Huang WT, Yang TS, Chen A, Wu YM, Wu MS, Chen CC. Ultra-High Packing Density Next Generation Microtube Array Membrane for Absorption Based Applications. MEMBRANES 2021; 11:273. [PMID: 33917933 PMCID: PMC8068329 DOI: 10.3390/membranes11040273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 01/09/2023]
Abstract
Previously, we successfully developed an extracorporeal endotoxin removal device (EERD) that is based on the novel next generation alternating microtube array membrane (MTAM-A) that was superior to the commercial equivalent. In this article, we demonstrated multiple different parameter modifications that led to multiple different types of novel new MTAM structures, which ultimately led to the formation of the MTAM-A. Contrary to the single layered MTAM, the MTAM-A series consisted of a superior packing density fiber connected in a double layered, alternating position which allowed for the greater fiber count to be packed per unit area. The respective MTAM variants were electrospun by utilizing our internally developed tri-axial electrospinning set up to produce the novel microstructures as seen in the respective MTAM variants. A key uniqueness of this study is the ability to produce self-arranged fibers into the respective MTAM variants by utilizing a single spinneret, which has not been demonstrated before. Of the MTAM variants, we observed a change in the microstructure from a single layered MTAM to the MTAM-A series when the ratio of surfactant to shell flow rate approaches 1:1.92. MTAM-A registered the greatest surface area of 2.2 times compared to the traditional single layered MTAM, with the greatest tensile strength at 1.02 ± 0.13 MPa and a maximum elongation of 57.70 ± 9.42%. The MTAM-A was selected for downstream immobilization of polymyxin B (PMB) and assembly into our own internally developed and fabricated dialyzer housing. Subsequently, the entire setup was tested with whole blood spiked with endotoxin; and benchmarked against commercial Toraymyxin fibers of the same size. The results demonstrated that the EERD based on the MTAM-A performed superior to that of the commercial equivalent, registering a rapid reduction of 73.18% of endotoxin (vs. Toraymyxin at 38.78%) at time point 15 min and a final total endotoxin removal of 89.43% (vs. Toraymyxin at 65.03%).
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (C.H.C.); (W.-T.H.); (Y.M.W.)
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (C.H.C.); (W.-T.H.); (Y.M.W.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11052, Taiwan;
| | - Amanda Chen
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Yun Ming Wu
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (C.H.C.); (W.-T.H.); (Y.M.W.)
| | - Mai-Szu Wu
- Division of Nephrology, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 11052, Taiwan
- Masters and Ph.D. Programs of Mind Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei 11052, Taiwan
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11052, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (C.H.C.); (W.-T.H.); (Y.M.W.)
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan
- College of Medicine, Taipei Medical University, Taipei 11052, Taiwan
- College of Pharmacy, Taipei Medical University, Taipei 11052, Taiwan
| |
Collapse
|
10
|
Grossemy S, Chan PPY, Doran PM. Enhanced Neural Differentiation Using Simultaneous Application of 3D Scaffold Culture, Fluid Flow, and Electrical Stimulation in Bioreactors. Adv Biol (Weinh) 2021; 5:e2000136. [PMID: 33852182 DOI: 10.1002/adbi.202000136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Neural differentiation is studied using a simultaneous application of 3D scaffold culture and hydrodynamic and electrical stimuli in purpose-designed recirculation bioreactors operated with continuous fluid flow. Pheochromocytoma (PC12) cells are seeded into nonwoven microfibrous viscose-rayon scaffolds functionalized with poly-l-lysine and laminin. Compared with the results from static control cultures with and without electrical stimulation and bioreactor cultures with the fluid flow without electrical stimulation, expression levels of the differentiation markers β3-tubulin, shootin1, and ephrin type-A receptor 2 are greatest when cells are cultured in bioreactors with fluid flow combined with in-situ electrical stimulus. Immunocytochemical assessment of neurite development and morphology within the scaffolds confirm the beneficial effects of exposing the cells to concurrent hydrodynamic and electrical treatments. Under the conditions tested, electrical stimulation by itself produces more pronounced levels of cell differentiation than fluid flow alone; however, significant additional improvements in differentiation are achieved by combining these treatments. Fluid flow and electrical stimuli exert independent and noninteractive effects on cellular differentiation, suggesting that interference between the mechanisms of differentiation enhancement by these two treatments is minimal during their simultaneous application. This work demonstrates the beneficial effects of combining several different potent physical environmental stimuli in cell culture systems to promote neurogenesis.
Collapse
Affiliation(s)
- Simon Grossemy
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Peggy P Y Chan
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
11
|
PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds. MEMBRANES 2021; 11:membranes11020112. [PMID: 33562851 PMCID: PMC7915411 DOI: 10.3390/membranes11020112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
A proper validation of an engineered brain microenvironment requires a trade of between the complexity of a cellular construct within the in vitro platform and the simple implementation of the investigational tool. The present work aims to accomplish this challenging balance by setting up an innovative membrane platform that represents a good compromise between a proper mimicked brain tissue analogue combined with an easily accessible and implemented membrane system. Another key aspect of the in vitro modelling disease is the identification of a precise phenotypic onset as a definite hallmark of the pathology that needs to be recapitulated within the implemented membrane system. On the basis of these assumptions, we propose a multiplex membrane system in which the recapitulation of specific neuro-pathological onsets related to Alzheimer’s disease pathologies, namely oxidative stress and β-amyloid1–42 toxicity, allowed us to test the neuroprotective effects of trans-crocetin on damaged neurons. The proposed multiplex membrane platform is therefore quite a versatile tool that allows the integration of neuronal pathological events in combination with the testing of new molecules. The present paper explores the use of this alternative methodology, which, relying on membrane technology approach, allows us to study the basic physiological and pathological behaviour of differentiated neuronal cells, as well as their changing behaviour, in response to new potential therapeutic treatment.
Collapse
|
12
|
Morelli S, Piscioneri A, Guarnieri G, Morelli A, Drioli E, De Bartolo L. Anti-neuroinflammatory effect of daidzein in human hypothalamic GnRH neurons in an in vitro membrane-based model. Biofactors 2021; 47:93-111. [PMID: 33350001 DOI: 10.1002/biof.1701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Phytoestrogens can control high-fat diet-induced hypothalamic inflammation that is associated with severe consequences, including obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases. However, the phytoestrogen anti-neuroinflammatory action is poorly understood. In this study, we explored the neuroprotection mediated by daidzein in hypothalamic neurons by using a membrane-based model of obesity-related neuroinflammation. To test the daidzein therapeutic potential a biohybrid membrane system, consisting of hfHypo GnRH-neurons in culture on PLGA membranes, was set up. It served as reliable in vitro tool capable to recapitulate the in vivo structure and function of GnRH hypothalamic tissue. Our findings highlighted the neuroprotective role of daidzein, being able to counteract the palmitate induced neuroinflammation. Daidzein protected hfHypo GnRH cells by downregulating cell death, proinflammatory processes, oxidative stress, and apoptosis. It also restored the proper cell morphology and functionality through a mechanism which probably involves the activation of ERβ and GPR30 receptors along with the expression of GnRH peptide and KISS1R.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
- WCU Energy Engineering Department, Hanyang University, Seoul, Republic of Korea
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| |
Collapse
|
13
|
Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. MEMBRANES 2020; 10:membranes10090217. [PMID: 32878153 PMCID: PMC7560086 DOI: 10.3390/membranes10090217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/28/2023]
Abstract
Most of natural water-soluble polymers are difficult to electrospin due to their specific chain conformation in aqueous solution, which limits their applications. This study investigated the effects of polyethylene oxide (PEO) on the electrospinning of hyaluronic acid (HA) in HA/PEO aqueous solutions. The rheological properties of HA/PEO aqueous solutions showed polymer chain entanglement in HA was the essential factor affecting its electrospinnability. Wide-angle X-ray scattering and differential scanning calorimetry analyses of a PEO crystal showed different crystallization behavior of the PEO chain with different molecular weight, which indicates different interaction with HA. A schematic molecular model has been proposed to explain the effect of PEO on the chain conformation of HA along with the relationship between electrospinnability and chain entanglement. PEO with a relatively high molecular weight with limited crystal formation formed extensive chain entanglements with HA, while PEO with relatively low molecular weight weakened the interactions among HA chains. The findings of this study provide a wide perspective to better understand the electrospinning mechanisms of natural polyelectrolytes and usage in tissue engineering.
Collapse
|
14
|
Konduri AK, Deepak CS, Purohit S, Narayan KS. An integrated 3D fluidic device with bubble guidance mechanism for long-term primary and secondary cell recordings on multi-electrode array platform. Biofabrication 2020; 12:045019. [PMID: 32650326 DOI: 10.1088/1758-5090/aba500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A 3D fluidic device (3D-FD) is designed and developed with the capability of auto bubble guidance via a helical pathway in a 3D geometry. This assembly is integrated to a multi-electrode array (MEA) to maintain secondary cell lines, primary cells and primary retinal tissue explants of chick embryos for continuous monitoring of the growth and electrophysiology recording. The ability to maintain the retinal tissue explant, extracted from day 14 (E-14) and day 21 (E-21) chick embryos in an integrated 3D-FD MEA for long duration (>100 h) and study the development is demonstrated. The enhanced duration of monitoring offered by this device is due to the controlled laminar flow and the maintenance of a stable microenvironment. The spontaneous electrical activity of the retina, including the spike recordings from the retinal ganglion layer, was monitored over a long duration. Specifically, the spiking activity in embryonic chick retinas of different days (E-14 to 21) is studied, and the presence of light-stimulated firings along with a distinct electroretinogram for E-21 mature retina provides the evidence of a stable microenvironment over a sustained period.
Collapse
Affiliation(s)
- Anil Krishna Konduri
- Chemistry and Physics of Material Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur-560064, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
15
|
Grossemy S, Chan PP, Doran PM. Stimulation of cell growth and neurogenesis using protein-functionalized microfibrous scaffolds and fluid flow in bioreactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Apsite I, Constante G, Dulle M, Vogt L, Caspari A, Boccaccini AR, Synytska A, Salehi S, Ionov L. 4D Biofabrication of fibrous artificial nerve graft for neuron regeneration. Biofabrication 2020; 12:035027. [DOI: 10.1088/1758-5090/ab94cf] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Chew CH, Cheng LW, Huang WT, Wu YM, Lee CW, Wu MS, Chen CC. Ultrahigh packing density next generation microtube array membrane: A novel solution for absorption-based extracorporeal endotoxin removal device. J Biomed Mater Res B Appl Biomater 2020; 108:2903-2911. [PMID: 32374516 DOI: 10.1002/jbm.b.34621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Sepsis is a deadly disease that is widely attributed to endotoxin released by gram-negative bacterial infections often plague emergency care facilities. Conventionally antibiotics and vasopressors are used to treat this disease. Recent treatment protocol shifted to a membrane to remove the offending endotoxin monomer. Despite this shift, membrane-based devices are often extremely costly, hindering accessibility to this life saving medical device. In view of this challenges, we adopted the internally developed polysulfone (PSF) microtube array membrane alternating (MTAM-A) for use in blood sepsis treatment. PSF MTAM-A were with polymyxin B (PMB) molecules immobilized were assembled into an internally developed cartridge housing and subjected to endotoxin removal models with water and blood spiked with 100 EU/ml of endotoxin as the feed solution. Samples were derived at 15, 30, 60, and 120 min and endotoxin levels were determined with limulus amebocyte lysate assay and benchmarked against the commercially available Toraymyxin device. The PSF MTAM-A with 2.3 times the surface area was successfully fabricated and with PMB molecules immobilized, and assembled into a hemoperfusion device. Dynamic endotoxin removal test revealed and overall endotoxin removal capacity of 90% and a superior endotoxin removal efficiency that was significantly higher than that of Toraymyxin (internally conducted and reported). The data suggested that PSF MTAM-A PMB membranes could potentially be applied in future hemoperfusion devices which would be significantly more efficient, compact, and affordable; potentially making such a life-saving medical device widely available to the general public.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,MTAMTech Corporation, Taipei, Taiwan
| | - Li-Wei Cheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,MTAMTech Corporation, Taipei, Taiwan
| | - Yun Ming Wu
- Graduate Institute of Nanomaterials and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Chew CH, Lee CW, Huang WT, Cheng LW, Chen A, Cheng TM, Liu YL, Chen CC. Microtube Array Membrane (MTAM)-Based Encapsulated Cell Therapy for Cancer Treatment. MEMBRANES 2020; 10:E80. [PMID: 32357523 PMCID: PMC7281484 DOI: 10.3390/membranes10050080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023]
Abstract
The treatment of cancer has evolved significantly in recent years with a strong focus on immunotherapy. Encapsulated Cell Therapy (ECT) for immunotherapy-based anti-cancer treatment is a unique niche within this landscape, where molecules such as signaling factors and antibodies produced from cells are encapsulated within a vehicle, with a host amount of benefits in terms of treatment efficacy and reduced side effects. However, traditional ECTs generally lie in two extremes; either a macro scale vehicle is utilized, resulting in a retrievable system but with limited diffusion and surface area, or a micro scale vehicle is utilized, resulting in a system that has excellent diffusion and surface area but is unretrievable in the event of side effects occurring, which greatly compromises the biosafety of patients. In this study we adapted our patented and novel electrospun Polysulfone (PSF) Microtube Array Membranes (MTAMs) as a 'middle' approach to the above dilemma, which possess excellent diffusion and surface area while being retrievable. Hybridoma cells were encapsulated within the PSF MTAMs, where they produced CEACAM6 antibodies to be used in the suppression of cancer cell line A549, MDA-MB-468 and PC 3 (control). In vitro and in vivo studies revealed excellent cell viability of hybridoma cells with continuous secretion of CEACAM6 antibodies which suppressed the MDA-MB-468 throughout the entire 21 days of experiment. Such outcome suggested that the PSF MTAMs were not only an excellent three-dimensional (3D) cell culture substrate but potentially also an excellent vehicle for the application in ECT systems. Future research needs to include a long term in vivo >6 months study before it can be used in clinical applications.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Xinyi District, Taipei 11031, Taiwan; (C.H.C.); (C.-W.L.); (W.-T.H.); (L.-W.C.)
| | - Chih-Wei Lee
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Xinyi District, Taipei 11031, Taiwan; (C.H.C.); (C.-W.L.); (W.-T.H.); (L.-W.C.)
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Xinyi District, Taipei 11031, Taiwan; (C.H.C.); (C.-W.L.); (W.-T.H.); (L.-W.C.)
| | - Li-Wei Cheng
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Xinyi District, Taipei 11031, Taiwan; (C.H.C.); (C.-W.L.); (W.-T.H.); (L.-W.C.)
| | - Amanda Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA;
| | - Tsai-Mu Cheng
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei 11052, Taiwan;
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11052, Taiwan;
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Xinyi District, Taipei 11031, Taiwan; (C.H.C.); (C.-W.L.); (W.-T.H.); (L.-W.C.)
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei 11052, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
Ramburrun P, Kumar P, Choonara YE, du Toit LC, Pillay V. Design and characterisation of PHBV-magnesium oleate directional nanofibers for neurosupport. ACTA ACUST UNITED AC 2019; 14:065015. [PMID: 31530743 DOI: 10.1088/1748-605x/ab453c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The focus of significance in neuronal repair strategies is the design of scaffold systems capable of promoting neuronal regeneration and directional guidance via provision of a biomimetic environment resemblance of native neural tissue. The purpose of this study was to synthesize triple-cue electrospun aligned nanofibrous films (physical cue) of poly(3-hyroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) blended with magnesium-oleate (MgOl) (chemical cue) and N-acetyl-L-cysteine (NAC) (therapeutic cue) with potential incorporation into hollow nerve guidance conduits for an enhanced regenerative strategy. A Box-Behnken experimental design of 15 formulations, were analysed for crystallinity, textural properties and in vitro water-uptake, erosion, NAC-release and PC12 cell viability. Nucleating effects of MgOl provided tuning of PHBV electrospinning-induced crystallinity and mechanical properties. Tensile strengths and deformation moduli of ±12 MPa and ±7 MP, respectively, were attainable, thereby matching native nerve mechanics. Crystallinity changes ascribed differing release kinetics to NAC over 30 d: diffusion-based (42%-58% crystallinity with 33%-47% fractional release) and polymer-relaxational (59%-65% crystallinity with 60%-82% fractional release). The synergistic activity of MgOl and NAC increased PC12 proliferation by 32.6% compared to the control. MgOl produced dual actions as non-toxic plasticiser and PC12 cell proliferation-promoter via nucleation and neurotrophic-like effects, respectively. Controlled release of NAC imparted neuro-protectant effects on PC12 cells and promoted neurite extension, thus, making electrospun PHBV-MgOl nanofibrous films a versatile and promising approach for axonal guidance in peripheral nerve repair strategies.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | | | | | | | | |
Collapse
|
20
|
Membrane bioreactor for investigation of neurodegeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109793. [DOI: 10.1016/j.msec.2019.109793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
|
21
|
Marchetti F, Nicola C, Pettinari R, Pettinari C, Aiello I, Deda M, Candreva A, Morelli S, Bartolo L, Crispini A. Zinc(II) Complexes of Acylpyrazolones Decorated with a Cyclohexyl Group Display Antiproliferative Activity Against Human Breast Cancer Cells. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fabio Marchetti
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Corrado Nicola
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Claudio Pettinari
- School of Pharmacy, Chemistry Section Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Iolinda Aiello
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Massimo Deda
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Angela Candreva
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| | - Sabrina Morelli
- Institute on Membrane Technology National Research Council of Italy c/o University of Calabria via P. Bucci ‐ cubo 17C 87030 Arcavacata di Rende (CS) Italy
| | - Loredana Bartolo
- Institute on Membrane Technology National Research Council of Italy c/o University of Calabria via P. Bucci ‐ cubo 17C 87030 Arcavacata di Rende (CS) Italy
| | - Alessandra Crispini
- Dept. of Chemistry and Chemical Technologies MAT_IN LAB University of Calabria 87030 Arcavacata di Rende (CS) Italy
| |
Collapse
|
22
|
Tseng VCH, Chew CH, Huang WT, Wang YK, Chen KS, Chou SY, Chen CC. An Effective Cell Coculture Platform Based on the Electrospun Microtube Array Membrane for Nerve Regeneration. Cells Tissues Organs 2017; 204:179-190. [PMID: 28848167 DOI: 10.1159/000477238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 01/26/2023] Open
Abstract
Recently, a novel substrate known as an electrospun polylactic acid (PLLA) microtube array membrane (MTAM) was successfully developed as a cell coculture platform. Structurally, this substrate is made up of one-to-one connected, ultrathin, submicron scale fibers that are arranged in an arrayed formation. Its unique structure confers several key advantages which are beneficial in a cell coculture system. In this study, the interaction between rat fetal neural stem cells (NSC) and astrocytes was examined by comparing the outcome of a typical Transwell-based coculture system and that of an electrospun PLLA MTAM-based coculture system. Compared to tissue culture polystyrene (TCP) and Transwell coculture inserts, a superior cell viability of NSC was observed when cultured in lumens of electrospun PLLA MTAM (with supportive immunostaining images). Reverse transcription polymerase chain reaction revealed a strong interaction between astrocytes and NSC through a higher expression of doublecortin and a lower expression of nestin. These data demonstrate that MTAM is clearly a better coculture platform than the traditional Transwell system.
Collapse
Affiliation(s)
- V Chia-Hsuan Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
23
|
Morelli S, Piscioneri A, Drioli E, De Bartolo L. Neuronal Differentiation Modulated by Polymeric Membrane Properties. Cells Tissues Organs 2017; 204:164-178. [PMID: 28787740 DOI: 10.1159/000477135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 01/19/2023] Open
Abstract
In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| | | | | | | |
Collapse
|