1
|
Dimmitt N, Lin CC. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions. Macromolecules 2024; 57:1556-1568. [PMID: 38435678 PMCID: PMC10903513 DOI: 10.1021/acs.macromol.3c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reactions are highly efficient click chemistry increasingly utilized in bioconjugation, live cell labeling, and the synthesis and modification of biomaterials. iEDDA click reactions have also been used to cross-link tetrazine (Tz) and norbornene (NB) modified macromers [e.g., multiarm poly(ethylene glycol) or PEG]. In these hydrogels, Tz-NB adducts exhibit stable supramolecular interactions with a high hydrolytic stability. Toward engineering a new class of PEG-based click hydrogels with highly adaptable properties, we previously reported a new group of NB-derivatized PEG macromers via reacting hydroxyl-terminated PEG with carbic anhydride (CA). In this work, we show that hydrogels cross-linked by PEGNBCA or its derivatives exhibited fast and tunable hydrolytic degradation. Here, we show that PEGNBCA (either mono- or octafunctional) and its dopamine or tyramine conjugated derivatives (i.e., PEGNB-D and PEGNB-T) readily cross-link with 4-arm PEG-Tz to form a novel class of multifunctional iEDDA click hydrogels. Through modularly adjusting the macromers with unstable and stable iEDDA click-induced supramolecular interactions (iEDDA-CSI), we achieved highly tunable degradation, with full degradation in less than 2 weeks to over two months. We also show that secondary enzymatic reactions could dynamically stiffen these hydrogels. These hydrogels could also be spatiotemporally photopatterned through visible light-initiated photochemistry. Finally, the iEDDA-CSI hydrogels post ester hydrolysis displayed shear-thinning and self-healing properties, enabling injectable delivery.
Collapse
Affiliation(s)
- Nathan
H. Dimmitt
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Lin CC, Frahm E, Afolabi FO. Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications. Macromol Biosci 2024; 24:e2300371. [PMID: 37748778 PMCID: PMC10922053 DOI: 10.1002/mabi.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The thiol-norbornene photo-click reaction has exceptionally fast crosslinking efficiency compared with chain-growth polymerization at equivalent macromer contents. The orthogonal reactivity between norbornene and thiol/tetrazine permits crosslinking of synthetic and naturally derived macromolecules with modularity, including poly(ethylene glycol) (PEG)-norbornene (PEGNB), gelatin-norbornene (GelNB), among others. For example, collagen-derived gelatin contains both cell adhesive motifs (e.g., Arg-Gly-Asp or RGD) and protease-labile sequences, making it an ideal macromer for forming cell-laden hydrogels. First reported in 2014, GelNB is increasingly used in orthogonal crosslinking of biomimetic matrices in various applications. GelNB can be crosslinked into hydrogels using multi-functional thiol linkers (e.g., dithiothreitol (DTT) or PEG-tetra-thiol (PEG4SH) via visible light or longwave ultraviolet (UV) light step-growth thiol-norbornene reaction or through an enzyme-mediated crosslinking (i.e., horseradish peroxidase, HRP). GelNB-based hydrogels can also be modularly crosslinked with tetrazine-bearing macromers via inverse electron-demand Diels-Alder (iEDDA) click reaction. This review surveys the various methods for preparing GelNB macromers, the crosslinking mechanisms of GelNB-based hydrogels, and their applications in cell and tissue engineering, including crosslinking of dynamic matrices, disease modeling, and tissue regeneration, delivery of therapeutics, as well as bioprinting and biofabrication.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Ellen Frahm
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Favor O. Afolabi
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| |
Collapse
|
3
|
Xiao X, Yang Y, Lai Y, Huang Z, Li C, Yang S, Niu C, Yang L, Feng L. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Biomacromolecules 2023; 24:5414-5427. [PMID: 37883334 DOI: 10.1021/acs.biomac.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Light-based three-dimensional (3D) bioprinting has been widely studied in tissue engineering. Despite the fact that free-radical chain polymerization-based bioinks like hyaluronic acid methacrylate (HAMA) and gelatin methacryloyl (GelMA) have been extensively explored in 3D bioprinting, the thiol-ene hydrogel system has attracted increasing attention for its ability in building hydrogel scaffolds in an oxygen-tolerant and cell-friendly way. Herein, we report a superfast curing thiol-ene bioink composed of norbornene-modified hyaluronic acid (NorHA) and thiolated gelatin (GelSH) for 3D bioprinting. A new facile approach was first introduced in the synthesis of NorHA, which circumvented the cumbersome steps involved in previous works. Additionally, after mixing NorHA with macro-cross-linker GelSH, the customized NorHA/GelSH bioinks exhibited fascinating superiorities over the gold standard GelMA bioinks, such as an ultrafast curing rate (1-5 s), much lowered photoinitiator concentration (0.03% w/v), and flexible physical performances. Moreover, the NorHA/GelSH hydrogel greatly avoided excess ROS generation, which is important for the survival of the encapsulated cells. Last, compared with the GelMA scaffold, the 3D-printed NorHA/GelSH scaffold not only exhibited excellent cell viability but also guaranteed cell proliferation, revealing its superior bioactivity. In conclusion, the NorHA/GelSH system is a promising candidate for 3D bioprinting and tissue engineering applications.
Collapse
Affiliation(s)
- Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shaojie Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chuan Niu
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
4
|
Bonetti L, De Nardo L, Farè S. Crosslinking strategies in modulating methylcellulose hydrogel properties. SOFT MATTER 2023; 19:7869-7884. [PMID: 37817578 DOI: 10.1039/d3sm00721a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Methylcellulose (MC) hydrogels are ideal materials for the design of thermo-responsive platforms capable of exploiting the environment temperature as a driving force to activate their smart transition. However, MC hydrogels usually show reduced stability in an aqueous environment and low mechanical properties, limiting their applications' breadth. A possible approach intended to overcome these limitations is chemical crosslinking, which represents a simple yet effective strategy to modify the MC hydrogels' properties (e.g., physicochemical, mechanical, and biological). In this regard, understanding the selected crosslinking method's role in modulating the MC hydrogels' properties is a key factor in their design. This review offers a perspective on the main MC chemical crosslinking approaches reported in the literature. Three main categories can be distinguished: (i) small molecule crosslinkers, (ii) crosslinking by high-energy radiation, and (iii) crosslinking via MC chemical modification. The advantages and limitations of each approach are elucidated, and special consideration is paid to the thermo-responsive properties after crosslinking towards the development of MC hydrogels with enhanced physical stability and mechanical performance, preserving the thermo-responsive behavior.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
5
|
Mi X, Su Z, Yue X, Ren Y, Yang X, Qiang L, Kong W, Ma Z, Zhang C, Wang J. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomater Sci 2023; 11:3813-3827. [PMID: 37052182 DOI: 10.1039/d3bm00159h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cancer is a severe threat to human life and health and represents the main cause of death globally. Drug therapy is one of the primary means of treating cancer; however, most anticancer medications do not proceed beyond preclinical testing because the conditions of actual human tumors are not effectively mimicked by traditional tumor models. Hence, bionic in vitro tumor models must be developed to screen for anticancer drugs. Three-dimensional (3D) bioprinting technology can produce structures with built-in spatial and chemical complexity and models with accurately controlled structures, a homogeneous size and morphology, less variation across batches, and a more realistic tumor microenvironment (TME). This technology can also rapidly produce such models for high-throughput anticancer medication testing. This review describes 3D bioprinting methods, the use of bioinks in tumor models, and in vitro tumor model design strategies for building complex tumor microenvironment features using biological 3D printing technology. Moreover, the application of 3D bioprinting in vitro tumor models in drug screening is also discussed.
Collapse
Affiliation(s)
- Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhi Su
- School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ya Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xue Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lei Qiang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinwu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
6
|
Kim J, Choi HS, Kim YM, Song SC. Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203464. [PMID: 36526612 DOI: 10.1002/smll.202203464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) bioprinting, which is being increasingly used in tissue engineering, requires bioinks with tunable mechanical properties, biological activities, and mechanical strength for in vivo implantation. Herein, a growth-factor-holding poly(organophosphazene)-based thermo-responsive nanocomposite (TNC) bioink system is developed. The mechanical properties of the TNC bioink are easily controlled within a moderate temperature range (5-37 °C). During printing, the mechanical properties of the TNC bioink, which determine the 3D printing resolution, can be tuned by varying the temperature (15-30 °C). After printing, TNC bioink scaffolds exhibit maximum stiffness at 37 °C. Additionally, because of its shear-thinning and self-healing properties, TNC bioinks can be extruded smoothly, demonstrating good printing outcomes. TNC bioink loaded with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-β1), key growth factors for osteogenesis, is used to print a scaffold that can stimulate biological activity. A biological scaffold printed using TNC bioink loaded with both growth factors and implanted on a rat calvarial defect model reveals significantly improved bone regenerative effects. The TNC bioink system is a promising next-generation bioink platform because its mechanical properties can be tuned easily for high-resolution 3D bioprinting with long-term stability and its growth-factor holding capability has strong clinical applicability.
Collapse
Affiliation(s)
- Jun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- Nexgel Biotech, Co., Ltd, Seoul, 02792, Republic of Korea
| |
Collapse
|
7
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
8
|
Kim MH, Lin CC. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2737-2746. [PMID: 36608274 DOI: 10.1021/acsami.2c20098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Digital light processing (DLP) bioprinting is an emerging technology for three-dimensional bioprinting (3DBP) owing to its high printing fidelity, fast fabrication speed, and higher printing resolution. Low-viscosity bioinks such as poly(ethylene glycol) diacrylate (PEGDA) are commonly used for DLP-based bioprinting. However, the cross-linking of PEGDA proceeds via chain-growth photopolymerization that displays significant heterogeneity in cross-linking density. In contrast, step-growth thiol-norbornene photopolymerization is not oxygen inhibited and produces hydrogels with an ideal network structure. The high cytocompatibility and rapid gelation of thiol-norbornene photopolymerization have lent itself to the cross-linking of cell-laden hydrogels but have not been extensively used for DLP bioprinting. In this study, we explored eight-arm PEG-norbornene (PEG8NB) as a bioink/resin for visible light-initiated DLP-based 3DBP. The PEG8NB-based DLP resin showed high printing fidelity and cytocompatibility even without the use of any bioactive motifs and high initial stiffness. In addition, we demonstrated the versatility of the PEGNB resin by printing solid structures as cell culture devices, hollow channels for endothelialization, and microwells for generating cell spheroids. This work not only expands the selection of bioinks for DLP-based 3DBP but also provides a platform for dynamic modification of the bioprinted constructs.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Facile synthesize of norbornene-hyaluronic acid to form hydrogel via thiol-norbornene reaction for biomedical application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|