1
|
Zhang J, Chen X, Chai Y, Jin Y, Li F, Zhuo C, Xu Y, Wang H, Ju E, Lao YH, Xie X, Li M, Tao Y. Mesenchymal stromal/stem cell spheroid-derived extracellular vesicles advance the therapeutic efficacy of 3D-printed vascularized artificial liver lobules in liver failure treatment. Bioact Mater 2025; 49:121-139. [PMID: 40124595 PMCID: PMC11930233 DOI: 10.1016/j.bioactmat.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Acute liver failure (ALF) is a highly lethal condition characterized by massive tissue necrosis, excessive oxidative stress, and serious inflammatory storms, necessitating prompt medical intervention. Although hepatocyte-like cells (HLCs) derived from mesenchymal stromal/stem cells (MSCs) offer a promising alternative cell source for hepatocyte therapy, their low in-vivo integration and differentiation efficiency may compromise the eventual therapeutic efficacy. To this end, MSCs are bioengineered into multicellular spheroids in the present study. The proteomic analyses and experimental results reveal that extracellular vesicles (EVs) derived from these MSC spheroids (SpEV) contain abundant highly expressed bioactive proteins and can be efficiently endocytosed by recipient cells, resulting in enhanced pro-angiogenic and antioxidative effects. In addition, MSC spheroids exhibit superior hepatic cell differentiation compared to an equivalent number of dissociated single MSCs, particularly when being co-cultured with hexagonally patterned endothelial cells in a liver lobule-like arrangement. Following orthotopic implantation in the mouse model, the enhanced paracrine effects of SpEV, combined with an immunoregulatory decellularized extracellular matrix hydrogel carrier and functional artificial liver lobules (ALL), synergically contribute to the effective amelioration of ALF, highlighting the substantial potential for clinical translation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yurong Chai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
2
|
Li G, He J, Shi J, Li X, Liu L, Ge X, Chen W, Jia J, Wang J, Yin M, Sakai Y, Sun W, Deng H, Pang Y. Bioprinting functional hepatocyte organoids derived from human chemically induced pluripotent stem cells to treat liver failure. Gut 2025:gutjnl-2024-333885. [PMID: 40032498 DOI: 10.1136/gutjnl-2024-333885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND To treat liver failure, three-dimensional (3D) bioprinting is a promising technology used to construct hepatic tissue models. However, current research on bioprinting of hepatic tissue models primarily relies on conventional single-cell-based bioprinting, where individual functional hepatocytes are dispersed and isolated within hydrogels, leading to insufficient treatment outcomes due to inadequate cell functionality. OBJECTIVE Here, we aim to bioprint a hepatic tissue model using functional hepatocyte organoids (HOs) and evaluate its liver-specific functions in vitro and in vivo. DESIGN Human chemically induced pluripotent stem cells (hCiPSCs) were used as a robust and non-genome-integrative cell source to produce highly viable and functional HOs (hCiPSC-HOs). An oxygen-permeable microwell device was used to enhance oxygen supply, ensuring high cell viability and promoting hCiPSC-HOs maturation. To maintain the long-term biofunction of hCiPSC-HOs, spheroid-based bioprinting was employed to construct hepatic tissue models (3DP-HOs). 3DP-HOs were intraperitoneally implanted in mice with liver failure. RESULTS 3DP-HOs demonstrated enhanced cell viability when compared with a model fabricated using single-cell-based bioprinting and exhibited gene profiles closely resembling hCiPSC-HOs while maintaining liver-specific functionality. Moreover, 3DP-HOs implantation significantly improved survival in mice with CCl4-induced acute-on-chronic liver failure and also Fah-/- mice with liver failure. 3DP-HOs significantly reduced liver injury, inflammation and fibrosis indices while promoting liver regeneration and biofunction expression. CONCLUSION Our bioprinted hepatic tissue model exhibits remarkable therapeutic efficacy for liver failure and holds great potential for clinical research in the field of liver regenerative medicine.
Collapse
Affiliation(s)
- Guangya Li
- Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, People's Republic of China
| | - Jihang Shi
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xinyi Li
- International Cancer Institute, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lulu Liu
- Peking University-Tsinghua University-National Institute of Biological Science Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Beijing, People's Republic of China
| | - Xinlan Ge
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, PLA, Beijing, People's Republic of China
| | - Wenhan Chen
- Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jun Jia
- Beijing Changping Laboratory, Beijing, People's Republic of China
| | - Jinlin Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ming Yin
- Beijing Vitalstar Biotechnology, Beijing, People's Republic of China
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, People's Republic of China
- Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Hongkui Deng
- Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
- Beijing Changping Laboratory, Beijing, People's Republic of China
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, People's Republic of China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
3
|
Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S, Dai X, Deng X. Advances, challenges and future applications of liver organoids in experimental regenerative medicine. Front Med (Lausanne) 2025; 11:1521851. [PMID: 39927267 PMCID: PMC11804114 DOI: 10.3389/fmed.2024.1521851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
The liver is a vital organ responsible for numerous metabolic processes in the human body, including the metabolism of drugs and nutrients. After liver damage, the organ can rapidly return to its original size if the causative factor is promptly eliminated. However, when the harmful stimulus persists, the liver's regenerative capacity becomes compromised. Substantial theoretical feasibility has been demonstrated at the levels of gene expression, molecular interactions, and intercellular dynamics, complemented by numerous successful animal studies. However, a robust model and carrier that closely resemble human physiology are still lacking for translating these theories into practice. The potential for liver regeneration has been a central focus of ongoing research. Over the past decade, the advent of organoid technology has provided improved models and materials for advancing research efforts. Liver organoid technology represents a novel in vitro culture system. After several years of refinement, human liver organoids can now accurately replicate the liver's morphological structure, nutrient and drug metabolism, gene expression, and secretory functions, providing a robust model for liver disease research. Regenerative medicine aims to replicate human organ or tissue functions to repair or replace damaged tissues, restore their structure or function, or stimulate the regeneration of tissues or organs within the body. Liver organoids possess the same structure and function as liver tissue, offering the potential to serve as a viable replacement for the liver, aligning with the goals of regenerative medicine. This review examines the role of liver organoids in regenerative medicine.
Collapse
Affiliation(s)
- Da Gong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guocai Wang
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xiaoyong Dai
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Wang K, Zhu Y, Li M, Yang Y, Zuo D, Sheng J, Zhang X, Wang W, Zhou P, Feng M. Genetically Modified Hepatocytes Targeting Bilirubin and Ammonia Metabolism for the Construction of Bioartificial Liver System. Biomater Res 2024; 28:0043. [PMID: 39011520 PMCID: PMC11246981 DOI: 10.34133/bmr.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Acute liver failure (ALF) is a complex syndrome that impairs the liver's function to detoxify bilirubin, ammonia, and other toxic metabolites. Bioartificial liver (BAL) aims to help ALF patients to pass through the urgent period by temporarily undertaking the liver's detoxification functions and promoting the recovery of the injured liver. We genetically modified the hepatocellular cell line HepG2 by stably overexpressing genes encoding UGT1A1, OATP1B1, OTC, ARG1, and CPS1. The resulting SynHeps-II cell line, encapsulated by Cytopore microcarriers, dramatically reduced the serum levels of bilirubin and ammonia, as demonstrated both in vitro using patient plasma and in vivo using ALF animal models. More importantly, we have also completed the 3-dimensional (3D) culturing of cells to meet the demands for industrialized rapid and mass production, and subsequently assembled the plasma-cell contacting BAL (PCC-BAL) system to fulfill the requirements of preclinical experiments. Extracorporeal blood purification of ALF rabbits with SynHeps-II-embedded PCC-BAL saved more than 80% of the animals from rapid death. Mechanistically, SynHeps-II therapy ameliorated liver and brain inflammation caused by high levels of bilirubin and ammonia and promoted liver regeneration by modulating the nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Also, SynHeps-II treatment reduced cerebral infiltration of neutrophils, reduced reactive oxygen species (ROS) levels, and mitigated hepatic encephalopathy. Taken together, SynHeps-II cell-based BAL was promising for the treatment of ALF patients and warrants clinical trials.
Collapse
Affiliation(s)
- Ke Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuankui Zhu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengqing Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaxi Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dianbao Zuo
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junfeng Sheng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinhai Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Wang
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Ping Zhou
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Mingqian Feng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
5
|
Deng B, Ma Y, Huang J, He R, Luo M, Mao L, Zhang E, Zhao Y, Wang X, Wang Q, Pang M, Mao Y, Yang H, Liu L, Huang P. Revitalizing liver function in mice with liver failure through transplantation of 3D-bioprinted liver with expanded primary hepatocytes. SCIENCE ADVANCES 2024; 10:eado1550. [PMID: 38848358 PMCID: PMC11160470 DOI: 10.1126/sciadv.ado1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024]
Abstract
The utilization of three-dimensional (3D) bioprinting technology to create a transplantable bioartificial liver emerges as a promising remedy for the scarcity of liver donors. This study outlines our strategy for constructing a 3D-bioprinted liver, using in vitro-expanded primary hepatocytes recognized for their safety and enhanced functional robustness as hepatic cell sources for bioartificial liver construction. In addition, we have developed bioink biomaterials with mechanical and rheological properties, as well as printing capabilities, tailored for 3D bioprinting. Upon heterotopic transplantation into the mesentery of tyrosinemia or 90% hepatectomy mice, our 3D-bioprinted liver effectively restored lost liver functions, consequently extending the life span of mice afflicted with liver injuries. Notably, the inclusion of an artificial blood vessel in our 3D-bioprinted liver allowed for biomolecule exchange with host blood vessels, demonstrating, in principle, the rapid integration of the bioartificial liver into the host vascular system. This model underscores the therapeutic potential of transplantation for the treatment of liver failure diseases.
Collapse
Affiliation(s)
- Bo Deng
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yue Ma
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Miaomiao Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Enhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yuanyuan Zhao
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoli Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mingchang Pang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanxia Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Zhang J, Chen X, Chai Y, Zhuo C, Xu Y, Xue T, Shao D, Tao Y, Li M. 3D Printing of a Vascularized Mini-Liver Based on the Size-Dependent Functional Enhancements of Cell Spheroids for Rescue of Liver Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309899. [PMID: 38380546 PMCID: PMC11077657 DOI: 10.1002/advs.202309899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/22/2024]
Abstract
The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Yurong Chai
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Dan Shao
- Institute of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
7
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
8
|
Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, Pan M, Gao Y, Xu S, Zhang Y, Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024; 27:108912. [PMID: 38323006 PMCID: PMC10844828 DOI: 10.1016/j.isci.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 μM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi 844000, China
| | - Wei Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
- Anesthesiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
9
|
Dortaj H, Azarpira N, Pakbaz S. Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities. Curr Stem Cell Res Ther 2024; 19:1303-1311. [PMID: 37846577 DOI: 10.2174/011574888x257744231009071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
11
|
Boscarino T, Mazzeo L, Abbruzzese F, Merone M, Piemonte V. Modeling and Validation of an Ultra-Compact Regenerative Liver Dialysis Device. Bioengineering (Basel) 2023; 10:706. [PMID: 37370637 DOI: 10.3390/bioengineering10060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The availability of a wearable artificial liver that facilitates extracorporeal dialysis outside of medical facilities would represent a significant advancement for patients requiring dialysis. The objective of this preliminary investigation is to explore, using validated mathematical models based on in vitro data, the feasibility of developing a novel, cost-effective, and highly compact extracorporeal liver support device that can be employed as a transitional therapy to transplantation outside of clinical settings. Such an innovation would offer substantial cost savings to the national healthcare system while significantly improving the patient's quality of life. The experimental components consisted of replacing traditional adsorbent materials with albumin-functionalized silica microspheres due to their capacity to adsorb bilirubin, one of the toxins responsible for liver failure. Two configurations of the dialysis module were tested: one involved dispersing the adsorbent particles in dialysis fluid, while the other did not require dialysis fluid. The results demonstrate the superior performance of the first configuration compared to the second. Although the clinical applicability of these models remains distant from the current stage, further studies will focus on optimizing these models to develop a more compact and wearable device.
Collapse
Affiliation(s)
- Tamara Boscarino
- Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment, Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Leone Mazzeo
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Franca Abbruzzese
- Unit of Tissue Engineering, Faculty of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Mario Merone
- Unit of Computer Systems and Bioinformatics, Faculty of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Piemonte
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
12
|
Du H, Chen Z, Gong X, Jiang M, Chen G, Wang F. Surface grafting of sericin onto thermoplastic polyurethanes to improve cell adhesion and function. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-16. [PMID: 36617532 DOI: 10.1080/09205063.2023.2166339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thermoplastic polyurethane (TPU) membrane has super physical-mechanical properties and biocompatibility, but the surface is inert and lack of active groups which limit its application in cell culture. Silk sericin (SS) can improve cell adhesion, proliferation, growth and metabolism. In this paper, SS was grafted onto the surface of TPU membrane by -NH2 bridge to build a high efficiency cell culture membrane. The FT-IR spectrum results indicated SS was grafted by chemical bond. According to the SEM and AFM results, we found that the grafting of SS reduced the water contact angle by 43.31% and increased the surface roughness by about four times. When TPU-SS was used for HepG2 cell culture, the cell adhesion rate of TPU-SS was significantly higher than that of the general TCPS cell culture plate, and the cell proliferation rate was close to that of TCPS. FDA/EB staining showed that HepG2 cells remained a better cellular growth behavior. HepG2 cells had higher cell vitality including the albumin secretion and the intracellular total protein synthesis. Grafting SS maintained the stability of cell and significantly decreased the cytotoxicity by decreased LDH release. In conclusion, SS grafting is beneficial to cell culture in vitro, and provides a key material for bioartificial liver culture system.
Collapse
Affiliation(s)
- Han Du
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xue Gong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mingyu Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|