1
|
Qianjuan Z, Rong S, Shengxi L, Xuanhao L, Bin L, Fuxiang S. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/ β-tricalcium phosphate (3D PCL/ β-TCP). Biomed Mater 2024; 19:065004. [PMID: 39208855 DOI: 10.1088/1748-605x/ad7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/β-TCP. 3D PCL/β-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10-5to 7.23 × 10-6m s-1) and depressurization (from 7.17 × 10-2to 2.25 × 10-2Pa) decreased as the medium passed through.In vitrobiomimetic mineralization experiments confirmed that 3D PCL/β-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/β-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.In vivoexperiments in rats further indicated that 3D PCL/β-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/β-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.
Collapse
Affiliation(s)
- Zhao Qianjuan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shan Rong
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liu Shengxi
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liu Xuanhao
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liu Bin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Song Fuxiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Shao Z, Zhang X, Xu Y, Zhu W, Shi X, Li L. Internal flow field analysis of a dendritic pore scaffold for bone tissue engineering. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38943424 DOI: 10.1080/10255842.2024.2372612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The effective reconstruction of osteochondral biomimetic structures is a key factor in guiding the regeneration of full-thickness osteochondral defects. Due to the avascular nature of hyaline cartilage, the greatest challenge in constructing this scaffold lies in both utilizing the biomimetic structure to promote vascular differentiation for nutrient delivery to hyaline cartilage, thereby enhancing the efficiency of osteochondral reconstruction, and effectively blocking vascular ingrowth into the cartilage layer to prevent cartilage mineralization. However, the intrinsic relationship between the planning of the microporous pipe network and the flow resistance in the biomimetic structure, and the mechanism of promoting cell adhesion to achieve vascular differentiation and inhibiting cell adhesion to block the growth of blood vessels are still unclear. Inspired by the structure of tree trunks, this study designed a biomimetic tree-like tubular network structure for osteochondral scaffolds based on Murray's law. Utilizing computational fluid dynamics, the study investigated the influence of the branching angle of micro-pores on the flow velocity, pressure distribution, and scaffold permeability within the scaffold. The results indicate that when the differentiation angle exceeds 50 degrees, the highest flow velocity occurs at the confluence of tributaries at the ninth fractal position, forming a barrier layer. This structure effectively guides vascular growth, enhances nutrient transport capacity, increases flow velocity to promote cell adhesion, and inhibits cell infiltration into the cartilage layer.
Collapse
Affiliation(s)
- Zongheng Shao
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xujing Zhang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Yan Xu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wenbo Zhu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xintong Shi
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Liangduo Li
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
4
|
Zhang S, Liu Y, Ma Z, Gao S, Chen L, Zhong H, Zhang C, Li T, Chen W, Zhang Y, Lin N. Osteoking promotes bone formation and bone defect repair through ZBP1-STAT1-PKR-MLKL-mediated necroptosis. Chin Med 2024; 19:13. [PMID: 38238785 PMCID: PMC10797925 DOI: 10.1186/s13020-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Osteoking has been used for fracture therapy with a satisfying clinical efficacy. However, its therapeutic properties and the underlying mechanisms remain elusive. METHOD A bone defect rat model was established to evaluate the pharmacological effects of Osteoking by the dynamic observation of X-ray, micro-CT and histopathologic examination. Transcriptome profiling was performed to identify bone defect-related genes and Osteoking effective targets. Then, a "disease-related gene-drug target" interaction network was constructed and a list of key network targets were screened, which were experimentally verified. RESULTS Osteoking effectively promoted bone defect repair in rats by accelerating the repair of cortical bone and the growth of trabeculae. Histopathologically, the bone defect rats displayed lower histopathologic scores in cortical bone, cancellous bone and bone connection than normal controls. In contrast, Osteoking exerted a favorable effect with a dose-dependent manner. The abnormal serum levels of bone turnover markers, bone growth factors and bone metabolism-related biochemical indexes in bone defect rats were also reversed by Osteoking treatment. Following the transcriptome-based network investigation, we hypothesized that osteoking might attenuate the levels of ZBP1-STAT1-PKR-MLKL-mediated necroptosis involved into bone defect. Experimentally, the expression levels of ZBP1, STAT1, PKR and the hallmark inflammatory cytokines for the end of necroptosis were distinctly elevated in bone defect rats, but were all effectively reversed by Osteoking treatment, which were also suppressed the activities of RIPK1, RIPK3 and MLKL in bone tissue supernatants. CONCLUSIONS Osteoking may promote bone formation and bone defect repair by regulating ZBP1-STAT1-PKR axis, leading to inhibit RIPK1/RIPK3/MLKL activation-mediated necroptosis.
Collapse
Affiliation(s)
- Suya Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Honggang Zhong
- BioMechanics Lab, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiheng Chen
- Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguanjie, Chaoyang District, Beijing, 100029, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
5
|
Liu YC, Lo GJ, Shyu VBH, Tsai CH, Chen CH, Chen CT. Surface Modification of Polylactic Acid Bioscaffold Fabricated via 3D Printing for Craniofacial Bone Tissue Engineering. Int J Mol Sci 2023; 24:17410. [PMID: 38139240 PMCID: PMC10744214 DOI: 10.3390/ijms242417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue engineering is a promising solution for advanced bone defect reconstruction after severe trauma. In bone tissue engineering, scaffolds in three-dimensional (3D) structures are crucial components for cell growth, migration, and infiltration. The three-dimensional printing technique is well suited to manufacturing scaffolds since it can fabricate scaffolds with highly complex designs under good internal structural control. In the current study, the 3D printing technique was utilized to produce polylactic acid (PLA) scaffolds. BMSCs were seeded onto selected scaffolds, either hydrogel-mixed or not, and cultivated in vitro to investigate the osteogenic potential in each group. After osteogenic incubation in vitro, BMSC-seeded scaffolds were implanted onto rat cranium defects, and bone regeneration was observed after 12 weeks. Our results demonstrated that BMSCs were able to seed onto 3D-printed PLA scaffolds under high-resolution observation. Real-time PCR analysis showed their osteogenic ability, which could be further improved after BMSCs were mixed with hydrogel. The in vivo study showed significantly increased bone regeneration when rats' cranium defects were implanted with a hydrogel-mixed BMSC-seeded scaffold compared to the control and those without cell or hydrogel groups. This study showed that 3D-printed PLA scaffolds are a feasible option for BMSC cultivation and osteogenic differentiation. After mixing with hydrogel, BMSC-seeded 3D-printed scaffolds can facilitate bone regeneration.
Collapse
Affiliation(s)
- Yao-Chang Liu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Guan-Jie Lo
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Victor Bong-Hang Shyu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (Y.-C.L.); (G.-J.L.); (V.B.-H.S.); (C.-H.T.)
| | - Chien-Tzung Chen
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Craniofacial Research Center at Taoyuan, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|