Nederveen-Schippers LM, Pathak P, Keizer-Gunnink I, Westphal AH, van Haastert PJM, Borst JW, Kortholt A, Skakun V. Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells.
Int J Mol Sci 2021;
22:ijms22147300. [PMID:
34298920 PMCID:
PMC8307594 DOI:
10.3390/ijms22147300]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.
Collapse