Jimenez GL, Shrestha B, Porter T, Starzyk B, Lesniak M, Kuwik M, Kochanowicz M, Szumera M, Lisiecki R, Dorosz D. Highly efficient green up-conversion emission from fluoroindate glass nanoparticles functionalized with a biocompatible polymer.
RSC Adv 2022;
12:20074-20079. [PMID:
35919588 PMCID:
PMC9272469 DOI:
10.1039/d2ra03171j]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Up-conversion nanoparticles have garnered lots of attention due to their ability to transform low energy light (near-infrared) into high-energy (visible) light, enabling their potential use as remote visible light nano-transducers. However, their low efficiency restricts their full potential. To overcome this disadvantage, fluoroindate glasses (InF3) doped at different molar concentrations of Yb3+ and Er3+ were obtained using the melting-quenching technique, reaching the highest green emission at 1.4Yb and 1.75Er (mol%), which corresponds to the 4S3/2 → 4I15/2 (540-552 nm) transition. The particles possess the amorphous nature of the glass and have a high thermostability, as corroborated by thermogravimetric assay. Furthermore, the spectral decay curve analysis showed efficient energy transfer as the rare-earth ions varied. This was corroborated with the absolute quantum yield (QY) obtained (85%) upon excitation at 385 nm with QYEr = 17% and QYYb = 68%. Additionally, InF3-1.4Yb-1.75Er was milled and functionalized using poly(ethylene glycol) to impart biocompatibility, which is essential for biomedical applications. Such functionalization was verified using FTIR, TG/DSC, and XRD.
Collapse