1
|
Dey A, Verma A, Bhaskar U, Sarkar B, Kallianpur M, Vishvakarma V, Das AK, Garai K, Mukherjee O, Ishii K, Tahara T, Maiti S. A Toxicogenic Interaction between Intracellular Amyloid-β and Apolipoprotein-E. ACS Chem Neurosci 2024; 15:1265-1275. [PMID: 38421952 DOI: 10.1021/acschemneuro.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the aggregation of amyloid β (Aβ) and tau proteins. Why ApoE variants are significant genetic risk factors remains a major unsolved puzzle in understanding AD, although intracellular interactions with ApoE are suspected to play a role. Here, we show that specific changes in the fluorescence lifetime of fluorescently tagged small Aβ oligomers in rat brain cells correlate with the cellular ApoE content. An inhibitor of the Aβ-ApoE interaction suppresses these changes and concomitantly reduces Aβ toxicity in a dose-dependent manner. Single-molecule techniques show changes both in the conformation and in the stoichiometry of the oligomers. Neural stem cells derived from hiPSCs of Alzheimer's patients also exhibit these fluorescence lifetime changes. We infer that intracellular interaction with ApoE modifies the N-terminus of the Aβ oligomers, inducing changes in their stoichiometry, membrane affinity, and toxicity. These changes can be directly imaged in live cells and can potentially be used as a rapid and quantitative cellular assay for AD drug discovery.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Aditi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Uchit Bhaskar
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Bidyut Sarkar
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Mamata Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Odity Mukherjee
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
2
|
Sano Y, Itoh Y, Kamonprasertsuk S, Suzuki L, Fukasawa A, Oikawa H, Takahashi S. Simple and Efficient Detection Scheme of Two-Color Fluorescence Correlation Spectroscopy for Protein Dynamics Investigation from Nanoseconds to Milliseconds. ACS PHYSICAL CHEMISTRY AU 2024; 4:85-93. [PMID: 38283787 PMCID: PMC10811772 DOI: 10.1021/acsphyschemau.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Nanosecond resolved fluorescence correlation spectroscopy (ns-FCS) based on two-color fluorescence detection is a powerful strategy for investigating the fast dynamics of biological macromolecules labeled with donor and acceptor fluorophores. The standard methods of ns-FCS use two single-photon avalanche diodes (SPADs) for the detection of single-color signals (four SPADs for two-color signals) to eliminate the afterpulse artifacts of SPAD at the expense of the efficiency of utilizing photon data in the calculation of correlograms. Herein, we demonstrated that hybrid photodetectors (HPDs) enable the recording of fluorescence photons in ns-FCS based on the minimal system using two HPDs for the detection of two-color signals. However, HPD exhibited afterpulses at a yield with respect to the rate of photodetection (<10-4) much lower than that of SPADs (∼10-2), which could still hamper correlation measurements. We demonstrated that the simple subtraction procedure could eliminate afterpulse artifacts. While the quantum efficiency of photodetection for HPDs is lower than that for high-performance SPADs, the developed system can be practically used for two-color ns-FCS in a time domain longer than a few nanoseconds. The fast chain dynamics of the B domain of protein A in the unfolded state was observed using the new method.
Collapse
Affiliation(s)
- Yutaka Sano
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yuji Itoh
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Supawich Kamonprasertsuk
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Leo Suzuki
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Atsuhito Fukasawa
- Electron
Tube Division, Hamamatsu Photonics K. K., Iwata, Shizuoka 438-0193, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- MOLCURE, Kawasaki, Kanagawa 212-0032, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|