1
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Cox BL, Erickson-Bhatt S, Szulczewski JM, Squirrell JM, Ludwig KD, Macdonald EB, Swader R, Ponik SM, Eliceiri KW, Fain SB. A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3D cell cultures. Magn Reson Med 2019; 81:3379-3391. [PMID: 30652350 DOI: 10.1002/mrm.27644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Fluorescence lifetime imaging microscopy (FLIM) of endogenous fluorescent metabolites permits the measurement of cellular metabolism in cell, tissue and animal models. In parallel, magnetic resonance spectroscopy (MRS) of dynamic nuclear (hyper)polarized (DNP) 13 C-pyruvate enables measurement of metabolism at larger in vivo scales. Presented here are the design and initial application of a bioreactor that connects these 2 metabolic imaging modalities in vitro, using 3D cell cultures. METHODS The model fitting for FLIM data analysis and the theory behind a model for the diffusion of pyruvate into a collagen gel are detailed. The device is MRI-compatible, including an optical window, a temperature control system and an injection port for the introduction of contrast agents. Three-dimensional printing, computer numerical control machining and laser cutting were used to fabricate custom parts. RESULTS Performance of the bioreactor is demonstrated for 4 T1 murine breast cancer cells under glucose deprivation. Mean nicotinamide adenine dinucleotide (NADH) fluorescence lifetimes were 10% longer and hyperpolarized 13 C lactate:pyruvate (Lac:Pyr) ratios were 60% lower for glucose-deprived 4 T1 cells compared to 4 T1 cells in normal medium. Looking at the individual components of the NADH fluorescent lifetime, τ1 (free NADH) showed no significant change, while τ2 (bound NADH) showed a significant increase, suggesting that the increase in mean lifetime was due to a change in bound NADH. CONCLUSION A novel bioreactor that is compatible with, and can exploit the benefits of, both FLIM and 13 C MRS in 3D cell cultures for studies of cell metabolism has been designed and applied.
Collapse
Affiliation(s)
- Benjamin L Cox
- Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin.,Morgridge Institute for Research, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin
| | - Sarah Erickson-Bhatt
- Morgridge Institute for Research, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, Wisconsin
| | - Joseph M Szulczewski
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, Wisconsin
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin
| | - Kai D Ludwig
- Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin
| | - Erin B Macdonald
- Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin
| | - Robert Swader
- Morgridge Institute for Research, Madison, Wisconsin
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, Wisconsin
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin.,Morgridge Institute for Research, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin at Madison, Madison, Wisconsin
| |
Collapse
|
3
|
Juul T, Palm F, Nielsen PM, Bertelsen LB, Laustsen C. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping. Magn Reson Med 2016; 78:457-461. [PMID: 27529808 DOI: 10.1002/mrm.26379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. METHODS Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. RESULTS Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. CONCLUSION Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Troels Juul
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|