1
|
Lachlan T, He H, Kusano K, Aiba T, Brisinda D, Fenici R, Osman F. Magnetocardiography in the Evaluation of Sudden Cardiac Death Risk: A Systematic Review. Ann Noninvasive Electrocardiol 2024; 29:e70028. [PMID: 39451057 PMCID: PMC11503861 DOI: 10.1111/anec.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Sudden cardiac death (SCD) is responsible for 15%-20% of deaths globally/year, predominantly due to ventricular arrhythmias (VA) caused by vulnerable cardiac substrate. Identifying those at risk has proved difficult with several limitations of current methods. We evaluated the evidence for magnetocardiography (MCG) in predicting SCD events. We searched Embase/Medline databases for English language papers evaluating MCG in patients at risk of VA. A total of 119 papers were screened with 27 papers included for analysis (23 case-controlled, four cohort studies); study sizes varied (n = 12 to 158). Etiology was ischemic cardiomyopathy (ICM) in 22, dilated cardiomyopathy in 2, arrhythmogenic cardiomyopathy in 1 and mixed in 2. In patients with ICM there were consistent discriminatory features seen using time-based and signal-complexity measures that persisted when evaluating the independence of these parameters. Current flow analysis demonstrated promising discriminatory results in other etiologies. The features studied support the role of MCG in identifying substrate for VA, particularly in ICM.
Collapse
Affiliation(s)
- Thomas Lachlan
- Department of Cardiology, Institute for Cardio‐Metabolic MedicineUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Hejie He
- Department of Cardiology, Institute for Cardio‐Metabolic MedicineUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Kengo Kusano
- National Cerebral and Cardiovascular Center JapanOsakaJapan
| | - Takeshi Aiba
- National Cerebral and Cardiovascular Center JapanOsakaJapan
| | - Donatella Brisinda
- Dipartimento Scienze Dell'invecchiamento, Ortopediche e ReumatologicheFondazione Policlinico Universitario Agostino Gemelli, IRCCSRomeItaly
- School of Medicine and SurgeryCatholic University of Sacred HeartRomeItaly
- Biomagnetism and Clinical Physiology International Center (BACPIC)RomeItaly
| | - Riccardo Fenici
- Dipartimento Scienze Dell'invecchiamento, Ortopediche e ReumatologicheFondazione Policlinico Universitario Agostino Gemelli, IRCCSRomeItaly
- School of Medicine and SurgeryCatholic University of Sacred HeartRomeItaly
- Biomagnetism and Clinical Physiology International Center (BACPIC)RomeItaly
| | - Faizel Osman
- Department of Cardiology, Institute for Cardio‐Metabolic MedicineUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
Iwata GZ, Nguyen CT, Tharratt K, Ruf M, Reinhardt T, Crivelli-Decker J, Liddy MSZ, Rugar AE, Lu F, Aschbacher K, Pratt EJ, Au-Yeung KY, Bogdanovic S. Bedside Magnetocardiography with a Scalar Sensor Array. SENSORS (BASEL, SWITZERLAND) 2024; 24:5402. [PMID: 39205098 PMCID: PMC11359538 DOI: 10.3390/s24165402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Decades of research have shown that magnetocardiography (MCG) has the potential to improve cardiac care decisions. However, sensor and system limitations have prevented its widespread adoption in clinical practice. We report an MCG system built around an array of scalar, optically pumped magnetometers (OPMs) that effectively rejects ambient magnetic interference without magnetic shielding. We successfully used this system, in conjunction with custom hardware and noise rejection algorithms, to record magneto-cardiograms and functional magnetic field maps from 30 volunteers in a regular downtown office environment. This demonstrates the technical feasibility of deploying our device architecture at the point-of-care, a key step in making MCG usable in real-world settings.
Collapse
|
3
|
Sun C, Liang Y, Yang X, Zhao B, Zhang P, Liu S, Yang D, Wu T, Zhang J, Guo H. Optimizing biomagnetic sensor performance through in silico diagnostics: A novel approach with BEST (Biomagnetism Evaluation via Simulated Testing). iScience 2024; 27:110167. [PMID: 38974973 PMCID: PMC11226959 DOI: 10.1016/j.isci.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Advancing biomagnetic measurement capabilities requires a nuanced understanding of sensor performance beyond traditional metrics. This study introduces Biomagnetism Evaluation via Simulated Testing (BEST), a novel methodology combining a current dipole model simulating cardiac biomagnetic fields with a convolutional neural network. Our investigation reveals that optimal sensor array performance is achieved when sensors are in close proximity to the magnetic source, with a shorter effective domain. Contrary to common assumptions, the bottom edge length of the sensor has a negligible impact on array performance. BEST provides a versatile framework for exploring the influence of diverse technical indicators on biomagnetic sensor performance, offering valuable insights for sensor development and selection.
Collapse
Affiliation(s)
- Chenxi Sun
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Yike Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Biying Zhao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Pengju Zhang
- Faculty of Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - Sirui Liu
- School of Physics, Peking University, Beijing 100871, China
| | - Dongyi Yang
- School of Physics, Peking University, Beijing 100871, China
| | - Teng Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Jianwei Zhang
- School of Physics, Peking University, Beijing 100871, China
| | - Hong Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Roth BJ. The magnetocardiogram. BIOPHYSICS REVIEWS 2024; 5:021305. [PMID: 38827563 PMCID: PMC11139488 DOI: 10.1063/5.0201950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
The magnetic field produced by the heart's electrical activity is called the magnetocardiogram (MCG). The first 20 years of MCG research established most of the concepts, instrumentation, and computational algorithms in the field. Additional insights into fundamental mechanisms of biomagnetism were gained by studying isolated hearts or even isolated pieces of cardiac tissue. Much effort has gone into calculating the MCG using computer models, including solving the inverse problem of deducing the bioelectric sources from biomagnetic measurements. Recently, most magnetocardiographic research has focused on clinical applications, driven in part by new technologies to measure weak biomagnetic fields.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
5
|
Kesavaraja C, Sengottuvel S, Patel R, Selvaraj RJ, Satheesh S, Mani A. Enhancing the efficiency and cost-effectiveness of magnetocardiography by optimal channel selection for cardiac diagnosis. Biomed Phys Eng Express 2024; 10:025023. [PMID: 38277702 DOI: 10.1088/2057-1976/ad233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Background. Magnetocardiography (MCG) is a non-invasive and non-contact technique that measures weak magnetic fields generated by the heart. It is highly effective in the diagnosis of heart abnormalities. Multichannel MCG provides detailed spatio-temporal information of the measured magnetic fields. While multichannel MCG systems are costly, usage of the optimal number of measurement channels to characterize cardiac magnetic fields without any appreciable loss of signal information would be economically beneficial and promote the widespread use of MCG technology.Methods. An optimization method based on the sequential selection approach is used to choose channels containing the maximum signal information while avoiding redundancy. The study comprised 40 healthy individuals, along with two subjects having ischemic heart disease and one subject with premature ventricular contraction. MCG measured using a 37 channel MCG system. After revisiting the existing methods of optimization, the mean error and correlation of the optimal set of measurement channels with those of all 37 channels are evaluated for different sets, and it has been found that 18 channels are adequate.Results. The chosen 18 optimal channels exhibited a strong correlation (0.99 ± 0.006) between the original and reconstructed magnetic field maps for a cardiac cycle in healthy subjects. The root mean square error is 0.295 pT, indicating minimal deviation.Conclusion. This selection method provides an efficient approach for choosing MCG, which could be used for minimizing the number of channels as well as in practical unforeseen measurement conditions where few channels are noisy during the measurement.
Collapse
Affiliation(s)
- C Kesavaraja
- Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam-603102, Tamil Nadu, India
| | - S Sengottuvel
- SQUIDs Applications section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102, Tamil Nadu, India
| | - Rajesh Patel
- SQUIDs Applications section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102, Tamil Nadu, India
| | - Raja J Selvaraj
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry-605006, India
| | - Santhosh Satheesh
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry-605006, India
| | - Awadhesh Mani
- Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam-603102, Tamil Nadu, India
- Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102, Tamil Nadu, India
| |
Collapse
|
6
|
Han X, Pang J, Xu D, Wang R, Xie F, Yang Y, Sun J, Li Y, Li R, Yin X, Xu Y, Fan J, Dong Y, Wu X, Yang X, Yu D, Wang D, Gao Y, Xiang M, Xu F, Sun J, Chen Y, Ning X. Magnetocardiography-based coronary artery disease severity assessment and localization using spatiotemporal features. Physiol Meas 2023; 44:125002. [PMID: 37995382 DOI: 10.1088/1361-6579/ad0f70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Objective.This study aimed to develop an automatic and accurate method for severity assessment and localization of coronary artery disease (CAD) based on an optically pumped magnetometer magnetocardiography (MCG) system.Approach.We proposed spatiotemporal features based on the MCG one-dimensional signals, including amplitude, correlation, local binary pattern, and shape features. To estimate the severity of CAD, we classified the stenosis as absence or mild, moderate, or severe cases and extracted a subset of features suitable for assessment. To localize CAD, we classified CAD groups according to the location of the stenosis, including the left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA), and separately extracted a subset of features suitable for determining the three CAD locations.Main results.For CAD severity assessment, a support vector machine (SVM) achieved the best result, with an accuracy of 75.1%, precision of 73.9%, sensitivity of 67.0%, specificity of 88.8%, F1-score of 69.8%, and area under the curve of 0.876. The highest accuracy and corresponding model for determining locations LAD, LCX, and RCA were 94.3% for the SVM, 84.4% for a discriminant analysis model, and 84.9% for the discriminant analysis model.Significance. The developed method enables the implementation of an automated system for severity assessment and localization of CAD. The amplitude and correlation features were key factors for severity assessment and localization. The proposed machine learning method can provide clinicians with an automatic and accurate diagnostic tool for interpreting MCG data related to CAD, possibly promoting clinical acceptance.
Collapse
Affiliation(s)
- Xiaole Han
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Jiaojiao Pang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Dong Xu
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
| | - Ruizhe Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Fei Xie
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yanfei Yang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
| | - Jiguang Sun
- Hangzhou Nuochi Life Science Co., Ltd, People's Republic of China
| | - Yu Li
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Ruochuan Li
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaofei Yin
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yansong Xu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Jiaxin Fan
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Yiming Dong
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaohui Wu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaoyun Yang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Digestive Disease, People's Republic of China
| | - Dexin Yu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Radiology, Qilu Hospital of Shandong University, People's Republic of China
| | - Dawei Wang
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
- Department of Radiology, Qilu Hospital of Shandong University, People's Republic of China
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
| | - Min Xiang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| | - Feng Xu
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Jinji Sun
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| | - Yuguo Chen
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, People's Republic of China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, People's Republic of China
- National Innovation Platform for Industry-Education Intearation in Medicine-Engineering Interdisciplinary, Shandong University, People's Republic of China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, People's Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, People's Republic of China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, People's Republic of China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, People's Republic of China
- Hefei National Laboratory, People's Republic of China
| |
Collapse
|
7
|
Xu K, Ren X, Xiang Y, Zhang M, Zhao X, Ma K, Tian Y, Wu D, Zeng Z, Wang G. Multi-Parameter Optimization of Rubidium Laser Optically Pumped Magnetometers with Geomagnetic Field Intensity. SENSORS (BASEL, SWITZERLAND) 2023; 23:8919. [PMID: 37960618 PMCID: PMC10648743 DOI: 10.3390/s23218919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Rubidium laser optically pumped magnetometers (OPMs) are widely used magnetic sensors based on the Zeeman effect, laser pumping, and magnetic resonance principles. They measure the magnetic field by measuring the magnetic resonance signal passing through a rubidium atomic gas cell. The quality of the magnetic resonance signal is a necessary condition for a magnetometer to achieve high sensitivity. In this research, to obtain the best magnetic resonance signal of rubidium laser OPMs in the Earth's magnetic field intensity, the experiment system of rubidium laser OPMs is built with a rubidium atomic gas cell as the core component. The linewidth and amplitude ratio (LAR) of magnetic resonance signals is utilized as the optimization objective function. The magnetic resonance signals of the magnetometer experiment system are experimentally measured for different laser frequencies, radio frequency (RF) intensities, laser powers, and atomic gas cell temperatures in a background magnetic field of 50,765 nT. The experimental results indicate that optimizing these parameters can reduce the LAR by one order of magnitude. This shows that the optimal parameter combination can effectively improve the sensitivity of the magnetometer. The sensitivity defined using the noise spectral density measured under optimal experimental parameters is 1.5 pT/Hz1/2@1 Hz. This work will provide key technical support for rubidium laser OPMs' product development.
Collapse
Affiliation(s)
| | - Xiuyan Ren
- Department of Nuclear Technology and Application, China Institute of Atomic Energy, Beijing 102413, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ohkubo M. The emergence of non-cryogenic quantum magnetic sensors: Synergistic advancement in magnetography together with SQUID. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:111501. [PMID: 38010159 DOI: 10.1063/5.0167372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Emerging non-superconductor quantum magnetic sensors, such as optically pumped magnetometer, fluxgate, magnetic tunnel junction, and diamond nitrogen-vacancy center, are approaching the performance of superconductor quantum interference devices (SQUIDs). These sensors are enabling magnetography for human bodies and brain-computer interface. Will they completely replace the SQUID magnetography in the near future?
Collapse
Affiliation(s)
- Masataka Ohkubo
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
9
|
Brisinda D, Fenici P, Fenici R. Clinical magnetocardiography: the unshielded bet-past, present, and future. Front Cardiovasc Med 2023; 10:1232882. [PMID: 37636301 PMCID: PMC10448194 DOI: 10.3389/fcvm.2023.1232882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 08/29/2023] Open
Abstract
Magnetocardiography (MCG), which is nowadays 60 years old, has not yet been fully accepted as a clinical tool. Nevertheless, a large body of research and several clinical trials have demonstrated its reliability in providing additional diagnostic electrophysiological information if compared with conventional non-invasive electrocardiographic methods. Since the beginning, one major objective difficulty has been the need to clean the weak cardiac magnetic signals from the much higher environmental noise, especially that of urban and hospital environments. The obvious solution to record the magnetocardiogram in highly performant magnetically shielded rooms has provided the ideal setup for decades of research demonstrating the diagnostic potential of this technology. However, only a few clinical institutions have had the resources to install and run routinely such highly expensive and technically demanding systems. Therefore, increasing attempts have been made to develop cheaper alternatives to improve the magnetic signal-to-noise ratio allowing MCG in unshielded hospital environments. In this article, the most relevant milestones in the MCG's journey are reviewed, addressing the possible reasons beyond the currently long-lasting difficulty to reach a clinical breakthrough and leveraging the authors' personal experience since the early 1980s attempting to finally bring MCG to the patient's bedside for many years thus far. Their nearly four decades of foundational experimental and clinical research between shielded and unshielded solutions are summarized and referenced, following the original vision that MCG had to be intended as an unrivaled method for contactless assessment of the cardiac electrophysiology and as an advanced method for non-invasive electroanatomical imaging, through multimodal integration with other non-fluoroscopic imaging techniques. Whereas all the above accounts for the past, with the available innovative sensors and more affordable active shielding technologies, the present demonstrates that several novel systems have been developed and tested in multicenter clinical trials adopting both shielded and unshielded MCG built-in hospital environments. The future of MCG will mostly be dependent on the results from the ongoing progress in novel sensor technology, which is relatively soon foreseen to provide multiple alternatives for the construction of more compact, affordable, portable, and even wearable devices for unshielded MCG inside hospital environments and perhaps also for ambulatory patients.
Collapse
Affiliation(s)
- D. Brisinda
- Dipartimento Scienze dell'invecchiamento, ortopediche e reumatologiche, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- School of Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| | - P. Fenici
- School of Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| | - R. Fenici
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| |
Collapse
|
10
|
Zhu K, Kiourti A. Real-Time Magnetocardiography with Passive Miniaturized Coil Array in Earth Ambient Field. SENSORS (BASEL, SWITZERLAND) 2023; 23:5567. [PMID: 37420733 DOI: 10.3390/s23125567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
We demonstrate a magnetocardiography (MCG) sensor that operates in non-shielded environments, in real-time, and without the need for an accompanying device to identify the cardiac cycles for averaging. We further validate the sensor's performance on human subjects. Our approach integrates seven (7) coils, previously optimized for maximum sensitivity, into a coil array. Based on Faraday's law, magnetic flux from the heart is translated into voltage across the coils. By leveraging digital signal processing (DSP), namely, bandpass filtering and averaging across coils, MCG can be retrieved in real-time. Our coil array can monitor real-time human MCG with clear QRS complexes in non-shielded environments. Intra- and inter-subject variability tests confirm repeatability and accuracy comparable to gold-standard electrocardiography (ECG), viz., a cardiac cycle detection accuracy of >99.13% and averaged R-R interval accuracy of <5.8 ms. Our results confirm the feasibility of real-time R-peak detection using the MCG sensor, as well as the ability to retrieve the full MCG spectrum as based upon the averaging of cycles identified via the MCG sensor itself. This work provides new insights into the development of accessible, miniaturized, safe, and low-cost MCG tools.
Collapse
Affiliation(s)
- Keren Zhu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Asimina Kiourti
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Nhalil H, Schultz M, Amrusi S, Grosz A, Klein L. High Sensitivity Planar Hall Effect Magnetic Field Gradiometer for Measurements in Millimeter Scale Environments. MICROMACHINES 2022; 13:1898. [PMID: 36363918 PMCID: PMC9694209 DOI: 10.3390/mi13111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
We report a specially designed magnetic field gradiometer based on a single elliptical planar Hall effect (PHE) sensor, which allows measuring magnetic field at nine different positions in a 4 mm length scale. The gradiometer detects magnetic field gradients with equivalent gradient magnetic noises of ∼958, ∼192, ∼51, and ∼26 nT/m√ Hz (pT/mm√Hz) at 0.1, 1, 10, and 50 Hz, respectively. The performance of the gradiometer is tested in ambient conditions by measuring the field gradient induced by electric currents driven in a long straight wire. This gradiometer is expected to be highly useful for the measurement of magnetic field gradients in confined areas for its small footprint, low noise, scalability, simple design, and low costs.
Collapse
Affiliation(s)
- Hariharan Nhalil
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Moty Schultz
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shai Amrusi
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Asaf Grosz
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Lior Klein
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
12
|
Beadle R, McDonnell D, Ghasemi Roudsari S, Unitt L, Parker S, Varcoe BTH. Assessing heart disease using a novel magnetocardiography device. Biomed Phys Eng Express 2021; 7. [PMID: 33578399 DOI: 10.1088/2057-1976/abe5c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022]
Abstract
The aim of this paper is to present the use of a portable, unshielded magnetocardiograph (MCG) and identify key characteristics of MCG scans that could be used in future studies to identify parameters that are sensitive to cardiac pathology. We recruited 50 patients with confirmed myocardial infarction (MI) within the past 12 weeks and 46 volunteers with no history of cardiac disease. A set of 38 parameters were extracted from MCG features including both signals from the sensor array and from magnetic images obtained from the device and principal component analysis was used to concentrate the information contained in these parameters into uncorrelated predictors. Linear fits of these parameters were then used to examine the ability of MCG to distinguish between sub-groups of patients. In the fist instance, the primary aim of this study was to ensure that MCG has a basic ability to separate a highly polarised patient group (young controls from post infarction patients) and to identify parameters that could be used in future studies to build a formal diagnostic tool kit. Parameters that parameterised left ventricular ejection fraction (LVEF) were identified and an example is presented to show differential low and high ejection fractions.
Collapse
Affiliation(s)
- Roger Beadle
- Department of Cardiology, South Warwickshire NHS Foundation Trust, Lakin Road Warwick CV34 5BW, Warwick, Warwickshire, CV34 5BW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Donna McDonnell
- Department of Cardiology, South Warwickshire NHS Foundation Trust, Lakin Road Warwick CV34 5BW, Warwick, Warwickshire, CV34 5BW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Shima Ghasemi Roudsari
- Creavo Medical Technologies, Westwood Way Westwood Business Park, Coventry, CV4 8HS, Coventry, CV4 8HS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Lynda Unitt
- Creavo Medical Technologies, Westwood Way Westwood Business Park, Coventry, CV4 8HS, Coventry, CV4 8HS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Steve Parker
- Creavo Medical Technologies, Westwood Way Westwood Business Park, Coventry, CV4 8HS, Coventry, CV4 8HS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Benjamin T H Varcoe
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Goodacre S, Walters SJ, Qayyum H, Coffey F, Carlton E, Coats T, Glazebrook W, Unitt L. Diagnostic accuracy of the magnetocardiograph for patients with suspected acute coronary syndrome. Emerg Med J 2020; 38:47-52. [DOI: 10.1136/emermed-2020-210396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/03/2022]
Abstract
BackgroundWe aimed to estimate the diagnostic accuracy of the VitalScan magnetocardiograph (MCG) for suspected acute coronary syndrome (ACS).MethodsWe undertook a prospective cohort study evaluating the diagnostic accuracy of the MCG in adults with suspected ACS. The reference standard of ACS was determined by an independent adjudication committee based on 30-day investigations and events. The cohort was split into a training sample, to derive the MCG algorithm and an algorithm combining MCG with a modified Manchester Acute Coronary Syndrome (MACS) clinical probability score, and a validation sample, to estimate diagnostic accuracy.ResultsWe recruited 756 participants and analysed data from 680 (293 training, 387 validation), of whom 96 (14%) had ACS. In the training sample, the respective area under the receiver operating characteristic (AUROC) curves were the following: MCG 0.66 (95% CI 0.58 to 0.74), MACS 0.64 (95% CI 0.54 to 0.73) and MCG+MACS 0.70 (95% CI 0.63 to 0.77). MCG specificity was 0.16 (95% CI 0.12 to 0.21) at the threshold achieving acceptable sensitivity for rule-out (>0.98). In the validation sample (n=387), the respective AUROCs were the following: MCG 0.56 (95% CI 0.48 to 0.64), MACS 0.69 (95% CI 0.61 to 0.77) and MCG+MACS 0.64 (95% CI 0.56 to 0.72). MCG sensitivity was 0.89 (95% CI 0.77 to 0.95) and specificity 0.15 (95% CI 0.12 to 0.20) at the rule-out threshold. MCG+MACS sensitivity was 0.85 (95% CI 0.73 to 0.92) and specificity 0.30 (95% CI 0.25 to 0.35).ConclusionThe VitalScan MCG is currently unable to accurately rule out ACS and is not yet ready for use in clinical practice. Further developmental research is required.
Collapse
|
14
|
Murzin D, Mapps DJ, Levada K, Belyaev V, Omelyanchik A, Panina L, Rodionova V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1569. [PMID: 32168981 PMCID: PMC7146409 DOI: 10.3390/s20061569] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise reduction or overall design improvement in order to make them smaller and cheaper while keeping the required values of a limit of detection. One of the cutting-edge topics today is the use of magnetic field sensors for applications such as magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-care devices. This introductory review focuses on modern magnetic field sensors suitable for biomedicine applications from a physical point of view and provides an overview of recent studies in this field. Types of magnetic field sensors include direct current superconducting quantum interference devices, search coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling magnetoresistance, optically pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry, and those based on the behavior of nitrogen-vacancy centers in the atomic lattice of diamond.
Collapse
Affiliation(s)
- Dmitry Murzin
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Desmond J. Mapps
- Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Victor Belyaev
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| | - Larissa Panina
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
- National University of Science and Technology, MISiS, 119049 Moscow, Russia
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (K.L.); (V.B.); (A.O.); (L.P.); (V.R.)
| |
Collapse
|
15
|
Swain PP, Sengottuvel S, Patel R, Mani A, Gireesan K. A feasibility study to measure magnetocardiography (MCG) in unshielded environment using first order gradiometer. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Guida G, Sorbo AR, Fenici R, Brisinda D. Predictive value of unshielded magnetocardiographic mapping to differentiate atrial fibrillation patients from healthy subjects. Ann Noninvasive Electrocardiol 2018; 23:e12569. [PMID: 29947446 DOI: 10.1111/anec.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND P-wave duration, its dispersion and signal-averaged ECG, are currently used markers of vulnerability to atrial fibrillation (AF). However, since tangential atrial currents are better detectable at the body surface as magnetic than electric signals, we investigated the accuracy of magnetocardiographic mapping (MCG), recorded in unshielded clinical environments, as predictor of AF occurrence. METHODS MCG recordings, in sinus rhythm (SR), of 71 AF patients and 75 controls were retrospectively analyzed. Beside electric and magnetic P-wave and PR interval duration, two MCG P-wave subintervals, defined P-dep and P-rep, were measured, basing on the point of inversion of atrial magnetic field (MF). Eight parameters were calculated from inverse solution with "Effective Magnetic Dipole (EMD) model" and 5 from "MF Extrema" analysis. Discriminant analysis (DA) was used to assess MCG predictive accuracy to differentiate AF patients from controls. RESULTS All but one (P-rep) intervals were significantly longer in AF patients. At univariate analysis, three EMD parameters differed significantly: in AF patients, the dipole-angle-elevation angular speed was lower during P-dep (p < 0.05) and higher during P-rep (p < 0.001) intervals. The space-trajectory during P-rep and the angle-dynamics during P-dep were higher (p < 0.05), whereas ratio-dynamics P-dep was lower (p < 0.01), in AF. At DA, with a combination of MCG and clinical parameters, 81.5% accuracy in differentiating AF patients from controls was achieved. At Cox-regression, the angle-dynamics P-dep was an independent predictor of AF recurrences (p = 0.037). CONCLUSIONS Quantitative analysis of atrial MF dynamics in SR and the solution of the inverse problem provide new sensitive markers of vulnerability to AF.
Collapse
Affiliation(s)
- Gianluigi Guida
- Biomagnetism and Clinical Physiology International Center, Catholic University of Sacred Heart, Rome, Italy
| | - Anna Rita Sorbo
- Biomagnetism and Clinical Physiology International Center, Catholic University of Sacred Heart, Rome, Italy
| | - Riccardo Fenici
- Biomagnetism and Clinical Physiology International Center, Catholic University of Sacred Heart, Rome, Italy
| | - Donatella Brisinda
- Biomagnetism and Clinical Physiology International Center, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
17
|
Lombardi G, Sorbo AR, Guida G, La Brocca L, Fenici R, Brisinda D. Magnetocardiographic classification and non-invasive electro-anatomical imaging of outflow tract ventricular arrhythmias in recreational sport activity practitioners. J Electrocardiol 2018; 51:433-439. [DOI: 10.1016/j.jelectrocard.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|