1
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
2
|
Losanno E, Ceradini M, Agnesi F, Righi G, Del Popolo G, Shokur S, Micera S. A Virtual Reality-Based Protocol to Determine the Preferred Control Strategy for Hand Neuroprostheses in People With Paralysis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2261-2269. [PMID: 38865234 DOI: 10.1109/tnsre.2024.3413192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hand neuroprostheses restore voluntary movement in people with paralysis through neuromodulation protocols. There are a variety of strategies to control hand neuroprostheses, which can be based on residual body movements or brain activity. There is no universally superior solution, rather the best approach may vary from patient to patient. Here, we propose a protocol based on an immersive virtual reality (VR) environment that simulates the use of a hand neuroprosthesis to allow patients to experience and familiarize themselves with various control schemes in clinically relevant tasks and choose the preferred one. We used our VR environment to compare two alternative control strategies over 5 days of training in four patients with C6 spinal cord injury: (a) control via the ipsilateral wrist, (b) control via the contralateral shoulder. We did not find a one-fits-all solution but rather a subject-specific preference that could not be predicted based only on a general clinical assessment. The main results were that the VR simulation allowed participants to experience the pros and cons of the proposed strategies and make an educated choice, and that there was a longitudinal improvement. This shows that our VR-based protocol is a useful tool for personalization and training of the control strategy of hand neuroprostheses, which could help to promote user comfort and thus acceptance.
Collapse
|
3
|
Canny E, Vansteensel MJ, van der Salm SMA, Müller-Putz GR, Berezutskaya J. Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome. J Neuroeng Rehabil 2023; 20:157. [PMID: 37980536 PMCID: PMC10656959 DOI: 10.1186/s12984-023-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Individuals with a locked-in state live with severe whole-body paralysis that limits their ability to communicate with family and loved ones. Recent advances in brain-computer interface (BCI) technology have presented a potential alternative for these people to communicate by detecting neural activity associated with attempted hand or speech movements and translating the decoded intended movements to a control signal for a computer. A technique that could potentially enrich the communication capacity of BCIs is functional electrical stimulation (FES) of paralyzed limbs and face to restore body and facial movements of paralyzed individuals, allowing to add body language and facial expression to communication BCI utterances. Here, we review the current state of the art of existing BCI and FES work in people with paralysis of body and face and propose that a combined BCI-FES approach, which has already proved successful in several applications in stroke and spinal cord injury, can provide a novel promising mode of communication for locked-in individuals.
Collapse
Affiliation(s)
- Evan Canny
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
| | - Julia Berezutskaya
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Saibene A, Caglioni M, Corchs S, Gasparini F. EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2798. [PMID: 36905004 PMCID: PMC10007053 DOI: 10.3390/s23052798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, the automatic recognition and interpretation of brain waves acquired by electroencephalographic (EEG) technologies have undergone remarkable growth, leading to a consequent rapid development of brain-computer interfaces (BCIs). EEG-based BCIs are non-invasive systems that allow communication between a human being and an external device interpreting brain activity directly. Thanks to the advances in neurotechnologies, and especially in the field of wearable devices, BCIs are now also employed outside medical and clinical applications. Within this context, this paper proposes a systematic review of EEG-based BCIs, focusing on one of the most promising paradigms based on motor imagery (MI) and limiting the analysis to applications that adopt wearable devices. This review aims to evaluate the maturity levels of these systems, both from the technological and computational points of view. The selection of papers has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), leading to 84 publications considered in the last ten years (from 2012 to 2022). Besides technological and computational aspects, this review also aims to systematically list experimental paradigms and available datasets in order to identify benchmarks and guidelines for the development of new applications and computational models.
Collapse
Affiliation(s)
- Aurora Saibene
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| | - Mirko Caglioni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
| | - Silvia Corchs
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Francesca Gasparini
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| |
Collapse
|
5
|
Cajigas I, Davis KC, Prins NW, Gallo S, Naeem JA, Fisher L, Ivan ME, Prasad A, Jagid JR. Brain-Computer interface control of stepping from invasive electrocorticography upper-limb motor imagery in a patient with quadriplegia. Front Hum Neurosci 2023; 16:1077416. [PMID: 36776220 PMCID: PMC9912159 DOI: 10.3389/fnhum.2022.1077416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Most spinal cord injuries (SCI) result in lower extremities paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI), patients may regain leg control using neural signals that actuate assistive devices. Here, we present a case of a subject with cervical SCI with an implanted electrocorticography (ECoG) device and determined whether the system is capable of motor-imagery-initiated walking in an assistive ambulator. Methods: A 24-year-old male subject with cervical SCI (C5 ASIA A) was implanted before the study with an ECoG sensing device over the sensorimotor hand region of the brain. The subject used motor-imagery (MI) to train decoders to classify sensorimotor rhythms. Fifteen sessions of closed-loop trials followed in which the subject ambulated for one hour on a robotic-assisted weight-supported treadmill one to three times per week. We evaluated the stability of the best-performing decoder over time to initiate walking on the treadmill by decoding upper-limb (UL) MI. Results: An online bagged trees classifier performed best with an accuracy of 84.15% averaged across 9 weeks. Decoder accuracy remained stable following throughout closed-loop data collection. Discussion: These results demonstrate that decoding UL MI is a feasible control signal for use in lower-limb motor control. Invasive BCI systems designed for upper-extremity motor control can be extended for controlling systems beyond upper extremity control alone. Importantly, the decoders used were able to use the invasive signal over several weeks to accurately classify MI from the invasive signal. More work is needed to determine the long-term consequence between UL MI and the resulting lower-limb control.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurological Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin C. Davis
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Noeline W. Prins
- Department of Electrical and Information Engineering, University of Ruhana, Hapugala, Sri Lanka
| | - Sebastian Gallo
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Jasim A. Naeem
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Letitia Fisher
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Michael E. Ivan
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Jonathan R. Jagid
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Jervis-Rademeyer H, Ong K, Djuric A, Munce S, Musselman KE, Marquez-Chin C. Therapists' perspectives on using brain-computer interface-triggered functional electrical stimulation therapy for individuals living with upper extremity paralysis: a qualitative case series study. J Neuroeng Rehabil 2022; 19:127. [PMID: 36419166 PMCID: PMC9684970 DOI: 10.1186/s12984-022-01107-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Brain computer interface-triggered functional electrical stimulation therapy (BCI-FEST) has shown promise as a therapy to improve upper extremity function for individuals who have had a stroke or spinal cord injury. The next step is to determine whether BCI-FEST could be used clinically as part of broader therapy practice. To do this, we need to understand therapists' opinions on using the BCI-FEST and what limitations potentially exist. Therefore, we conducted a qualitative exploratory study to understand the perspectives of therapists on their experiences delivering BCI-FEST and the feasibility of large-scale clinical implementation. METHODS Semi-structured interviews were conducted with physical therapists (PTs) and occupational therapists (OTs) who have delivered BCI-FEST. Interview questions were developed using the COM-B (Capability, Opportunity, Motivation-Behaviour) model of behaviour change. COM-B components were used to inform deductive content analysis while other subthemes were detected using an inductive approach. RESULTS We interviewed PTs (n = 3) and OTs (n = 3), with 360 combined hours of experience delivering BCI-FEST. Components and subcomponents of the COM-B determined deductively included: (1) Capability (physical, psychological), (2) Opportunity (physical, social), and (3) Motivation (automatic, reflective). Under each deductive subcomponent, one to two inductive subthemes were identified (n = 8). Capability and Motivation were perceived as strengths, and therefore supported therapists' decisions to use BCI-FEST. Under Opportunity, for both subcomponents (physical, social), therapists recognized the need for more support to clinically implement BCI-FEST. CONCLUSIONS We identified facilitating and limiting factors to BCI-FEST delivery in a clinical setting according to clinicians. These factors implied that education, training, a support network or mentors, and restructuring the physical environment (e.g., scheduling) should be targeted as interventions. The results of this study may help to inform future development of new technologies and interventions.
Collapse
Affiliation(s)
- Hope Jervis-Rademeyer
- grid.17063.330000 0001 2157 2938Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Kenneth Ong
- grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Alexander Djuric
- grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Sarah Munce
- grid.17063.330000 0001 2157 2938Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada
| | - Kristin E. Musselman
- grid.17063.330000 0001 2157 2938Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Cesar Marquez-Chin
- grid.231844.80000 0004 0474 0428The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Rossi F, Savi F, Prestia A, Mongardi A, Demarchi D, Buccino G. Combining Action Observation Treatment with a Brain-Computer Interface System: Perspectives on Neurorehabilitation. SENSORS 2021; 21:s21248504. [PMID: 34960597 PMCID: PMC8707407 DOI: 10.3390/s21248504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022]
Abstract
Action observation treatment (AOT) exploits a neurophysiological mechanism, matching an observed action on the neural substrates where that action is motorically represented. This mechanism is also known as mirror mechanism. In a typical AOT session, one can distinguish an observation phase and an execution phase. During the observation phase, the patient observes a daily action and soon after, during the execution phase, he/she is asked to perform the observed action at the best of his/her ability. Indeed, the execution phase may sometimes be difficult for those patients where motor impairment is severe. Although, in the current practice, the physiotherapist does not intervene on the quality of the execution phase, here, we propose a stimulation system based on neurophysiological parameters. This perspective article focuses on the possibility to combine AOT with a brain–computer interface system (BCI) that stimulates upper limb muscles, thus facilitating the execution of actions during a rehabilitation session. Combining a rehabilitation tool that is well-grounded in neurophysiology with a stimulation system, such as the one proposed, may improve the efficacy of AOT in the treatment of severe neurological patients, including stroke patients, Parkinson’s disease patients, and children with cerebral palsy.
Collapse
Affiliation(s)
- Fabio Rossi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Federica Savi
- Fondazione Don Carlo Gnocchi, Piazzale dei Servi 3, 43100 Parma, Italy;
| | - Andrea Prestia
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Andrea Mongardi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-91751596
| |
Collapse
|
8
|
Cajigas I, Davis KC, Meschede-Krasa B, Prins NW, Gallo S, Naeem JA, Palermo A, Wilson A, Guerra S, Parks BA, Zimmerman L, Gant K, Levi AD, Dietrich WD, Fisher L, Vanni S, Tauber JM, Garwood IC, Abel JH, Brown EN, Ivan ME, Prasad A, Jagid J. Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun 2021; 3:fcab248. [PMID: 34870202 PMCID: PMC8637800 DOI: 10.1093/braincomms/fcab248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restoring volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal Injury Association Impairment Scale A) using a portable fully implanted brain-computer interface within the home environment. The brain-computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity. Movement-intent was used to trigger functional electrical stimulation of the dominant hand during an initial 29-weeks laboratory study and subsequently via a mechanical hand orthosis during in-home use. Movement-intent information could be decoded consistently throughout the 29-weeks in-laboratory study with a mean accuracy of 89.0% (range 78-93.3%). Improvements were observed in both the speed and accuracy of various upper extremity tasks, including lifting small objects and transferring objects to specific targets. At-home decoding accuracy during open-loop trials reached an accuracy of 91.3% (range 80-98.95%) and an accuracy of 88.3% (range 77.6-95.5%) during closed-loop trials. Importantly, the temporal stability of both the functional outcomes and decoder metrics were not explored in this study. A fully implanted brain-computer interface can be safely used to reliably decode movement-intent from motor cortex, allowing for accurate volitional control of hand grasp.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kevin C Davis
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Benyamin Meschede-Krasa
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Electrical and Information Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle 80000, Sri Lanka
| | - Sebastian Gallo
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Jasim Ahmad Naeem
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Anne Palermo
- Department of Physical Therapy, University of Miami, Miami, FL 33146, USA
| | - Audrey Wilson
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Santiago Guerra
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Brandon A Parks
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Lauren Zimmerman
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Katie Gant
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Allan D Levi
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Letitia Fisher
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Steven Vanni
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - John Michael Tauber
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Indie C Garwood
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John H Abel
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emery N Brown
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Jonathan Jagid
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
EEG-FES-Force-MMG closed-loop control systems of a volunteer with paraplegia considering motor imagery with fatigue recognition and automatic shut-off. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurg Clin N Am 2021; 32:407-417. [PMID: 34053728 DOI: 10.1016/j.nec.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As neural bypass interfacing, neuromodulation, and neurorehabilitation continue to evolve, there is growing recognition that combination therapies may achieve superior results. This article briefly introduces these broad areas of active research and lays out some of the current evidence for their use for patients with spinal cord injury.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA.
| | - Aditya Vedantam
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA
| |
Collapse
|
11
|
Khaliq Fard M, Fallah A, Maleki A. Neural decoding of continuous upper limb movements: a meta-analysis. Disabil Rehabil Assist Technol 2020; 17:731-737. [PMID: 33186068 DOI: 10.1080/17483107.2020.1842919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE EEG-based motion trajectory decoding makes a promising approach for neurotechnology which can be used for neural control of motion reconstruction and neurorehabilitation tools. However, the feasibility and validity of continuous motion decoding by non-invasive brain activity are not clear. The main aim of this study was to perform a meta-analysis across studies that examined the ability of EEG-based continuous motion decoding of upper limb movements. APPROACH Pearson's correlation coefficient (CC) was used to evaluate the model performance of the studies and considered as an effect size. To estimate the overall effect size of neural decoding of motion trajectory across studies, characteristics of included studies were addressed and the random effect model was applied to the heterogeneous studies which estimated overall effect size distribution. Furthermore, the significant difference between the two subgroups of imagined and executed movements was analysed. MAIN RESULTS The mean of the overall effect size was computed 0.46 across the nonhomogeneous studies. The results showed no significant difference between imagined and executed movements (Chi2=0.28, df = 1, p = 0.60). SIGNIFICANCE Meta-analysis results confirm that imagination like execution movements can be used for neural decoding of motion trajectory in neural motor control systems. Also, nonlinear compare with linear model statistically confirmed to be more beneficial for complex movements. Furthermore, a new approach of synergy-based motion decoding can be significantly effective to increase model performance and more research needs to evaluate this method for different levels of complexity of movements.IMPLICATIONS FOR REHABILITATIONNeural decoding methods base on EEG as a non-invasive brain activity, are more user friendly for neurorehabilitation than invasive methods that developing of it makes it more applicable for reconstructing activities of daily living.Neurotechnology for neural control of motion reconstruction, makes the rehabilitation tools to be more synchrony with human intentional movement that can be used to improve the brain neuroplastisity in stroke or other paralysed people.The feasibility and validity of imagined movements equal with executed movements show that amputee people also can benefit EEG-based motion decoding for controling rehabilitation tools just by imagination of their intentional movements.For neurorehabilitation tools, comparing the study outcomes illucidate that the approach of synergy-based motor control in brain activities concluded significantly high performance that highlighted the need it to more investigated in future research.
Collapse
Affiliation(s)
- Mahdie Khaliq Fard
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ali Fallah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
12
|
Farrokhi B, Erfanian A. A state-based probabilistic method for decoding hand position during movement from ECoG signals in non-human primate. J Neural Eng 2020; 17:026042. [PMID: 32224511 DOI: 10.1088/1741-2552/ab848b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In this study, we proposed a state-based probabilistic method for decoding hand positions during unilateral and bilateral movements using the ECoG signals recorded from the brain of Rhesus monkey. APPROACH A customized electrode array was implanted subdurally in the right hemisphere of the brain covering from the primary motor cortex to the frontal cortex. Three different experimental paradigms were considered: ipsilateral, contralateral, and bilateral movements. During unilateral movement, the monkey was trained to get food with one hand, while during bilateral movement, the monkey used its left and right hands alternately to get food. To estimate the hand positions, a state-based probabilistic method was introduced which was based on the conditional probability of the hand movement state (i.e. idle, right hand movement, and left hand movement) and the conditional expectation of the hand position for each state. Moreover, a hybrid feature extraction method based on linear discriminant analysis and partial least squares (PLS) was introduced. MAIN RESULTS The proposed method could successfully decode the hand positions during ipsilateral, contralateral, and bilateral movements and significantly improved the decoding performance compared to the conventional Kalman and PLS regression methods [Formula: see text]. The proposed hybrid feature extraction method was found to outperform both the PLS and PCA methods [Formula: see text]. Investigating the kinematic information of each frequency band shows that more informative frequency bands were [Formula: see text] (15-30 Hz) and [Formula: see text](50-100 Hz) for ipsilateral and [Formula: see text] and [Formula: see text] (100-200 Hz) for contralateral movements. It is observed that ipsilateral movement was decoded better than contralateral movement for [Formula: see text] (5-15 Hz) and [Formula: see text] bands, while contralateral movements was decoded better for [Formula: see text] (30-200 Hz) and hfECoG (200-400 Hz) bands. SIGNIFICANCE Accurate decoding the bilateral movement using the ECoG recorded from one brain hemisphere is an important issue toward real-life applications of the brain-machine interface technologies.
Collapse
Affiliation(s)
- Behraz Farrokhi
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Iran Neural Technology Research Centre, Tehran, Iran
| | | |
Collapse
|
13
|
Zhang L, Chen L, Wang Z, Liu S, Wang M, Chen S, Ming D. Study on brain computer interface combined tactile enhancement and time-varying features .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3042-3045. [PMID: 31946529 DOI: 10.1109/embc.2019.8856609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroplasticity plays an important role in the recovery of injured nervous system. Both motor imagery (MI) and functional electrical stimulation (FES) can promote plasticity by activating the sensorimotor cortex. Specifically, MI as control strategy to activate FES in a brain computer interface (BCI) is a promising approach for motor functions recovery. This study demonstrated the efficiency of somatosensory input provided by electrical stimulation (ES) on cortical activation during MI. And the performance of classifiers with time-varying electroencephalography (EEG) features also be probed. We inspected the cortical activation by EEG for three experiment conditions, i.e. ES during MI, MI and ES. And the classification accuracy of three conditions were discussed respectively. Results showed that the ES during MI could induce stronger cortical activation than the other two conditions, and the classifier with time-varying EEG features had a higher classification accuracy. The results demonstrated that MI-based BCI combined MI and ES which fulfills two properties of somatosensory input and time-varying features is an available approach for motor neural rehabilitation.
Collapse
|
14
|
Prins NW, Mylavarapu R, Shoup AM, Debnath S, Prasad A. Spinal cord neural interfacing in common marmosets (Callithrix jacchus). J Neural Eng 2020; 17:016031. [PMID: 31480029 PMCID: PMC6960332 DOI: 10.1088/1741-2552/ab4104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective: Spinal cord injury (SCI) remains an ailment with no comprehensive cure, and affected patients suffer from a greatly diminished quality of life. This large population could significantly benefit from prosthetic technologies to replace missing limbs, reanimate nonfunctional limbs, and enable new modes of technologies to restore muscle control and function. While cortically driven brain machine interfaces (BMIs) have achieved great success in interfacing with an external device to restore lost functions, interfacing with the spinal cord can provide an additional site to record motor control signals, which can have its own advantages, albeit challenges from using a smaller non-human primate (NHP) model. The goal of this study is to develop such a spinal cord neural interface to record motor signals from the high cervical levels of the spinal cord in a common marmoset (Callithrix jacchus) model. Approach and Main Results: Detailed methods are discussed for this smaller NHP model that includes behavioral training, surgical methods for electrode placement, connector placement and wire handling, electrode specifications and modifications for accessing high cervical level interneurons and motorneurons. The study also discusses the methods and challenges involved in behavioral multi-channel extracellular recording from the marmoset spinal cord, including the major recording failure mechanisms encountered during the study. Significance: Marmosets provide a good step between rodent and larger NHP models due to their small size, ease of handling, cognitive abilities, and similarities to other primate motor systems. The study shows the feasibility of recording spinal cord signals and using marmosets as a smaller NHP model in behavioral neuroscience studies. Interfacing with the spinal cord in chronically implanted animals can provide useful information about how motor control signals within the spinal cord are transformed to cause limb movements.
Collapse
Affiliation(s)
- Noeline W Prins
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146, United States of America
| | | | | | | | | |
Collapse
|
15
|
A BCI Gaze Sensing Method Using Low Jitter Code Modulated VEP. SENSORS 2019; 19:s19173797. [PMID: 31480734 PMCID: PMC6749456 DOI: 10.3390/s19173797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
Visual evoked potentials (VEPs) are used in clinical applications in ophthalmology, neurology, and extensively in brain-computer interface (BCI) research. Many BCI implementations utilize steady-state VEP (SSVEP) and/or code modulated VEP (c-VEP) as inputs, in tandem with sophisticated methods to improve information transfer rates (ITR). There is a gap in knowledge regarding the adaptation dynamics and physiological generation mechanisms of the VEP response, and the relation of these factors with BCI performance. A simple, dual pattern display setup was used to evoke VEPs and to test signatures elicited by non-isochronic, non-singular, low jitter stimuli at the rates of 10, 32, 50, and 70 reversals per second (rps). Non-isochronic, low-jitter stimulation elicits quasi-steady-state VEPs (QSS-VEPs) that are utilized for the simultaneous generation of transient VEP and QSS-VEP. QSS-VEP is a special case of c-VEPs, and it is assumed that it shares similar generators of the SSVEPs. Eight subjects were recorded, and the performance of the overall system was analyzed using receiver operating characteristic (ROC) curves, accuracy plots, and ITRs. In summary, QSS-VEPs performed better than transient VEPs (TR-VEP). It was found that in general, 32 rps stimulation had the highest ROC area, accuracy, and ITRs. Moreover, QSS-VEPs were found to lead to higher accuracy by template matching compared to SSVEPs at 32 rps. To investigate the reasons behind this, adaptation dynamics of transient VEPs and QSS-VEPs at all four rates were analyzed and speculated.
Collapse
|
16
|
Debnath S, Prins NW, Pohlmeyer E, Mylavarapu R, Geng S, Sanchez JC, Prasad A. Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum. Biomed Phys Eng Express 2018; 4:055025. [PMID: 31011432 PMCID: PMC6474681 DOI: 10.1088/2057-1976/aada67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current neuroprosthetics rely on stable, high quality recordings from chronically implanted microelectrode arrays (MEAs) in neural tissue. While chronic electrophysiological recordings and electrode failure modes have been reported from rodent and larger non-human primate (NHP) models, chronic recordings from the marmoset model have not been previously described. The common marmoset is a New World primate that is easier to breed and handle compared to larger NHPs and has a similarly organized brain, making it a potentially useful smaller NHP model for neuroscience studies. This study reports recording stability and signal quality of MEAs chronically implanted in behaving marmosets. Six adult male marmosets, trained for reaching tasks, were implanted with either a 16-channel tungsten microwire array (five animals) or a Pt-Ir floating MEA (one animal) in the hand-arm region of the primary motor cortex (M1) and another MEA in the striatum targeting the nucleus accumbens (NAcc). Signal stability and quality was quantified as a function of array yield (active electrodes that recorded action potentials), neuronal yield (isolated single units during a recording session), and signal-to-noise ratio (SNR). Out of 11 implanted MEAs, nine provided functional recordings for at least three months, with two arrays functional for 10 months. In general, implants had high yield, which remained stable for up to several months. However, mechanical failure attributed to MEA connector was the most common failure mode. In the longest implants, signal degradation occurred, which was characterized by gradual decline in array yield, reduced number of isolated single units, and changes in waveform shape of action potentials. This work demonstrates the feasibility of longterm recordings from MEAs implanted in cortical and deep brain structures in the marmoset model. The ability to chronically record cortical signals for neural prosthetics applications in the common marmoset extends the potential of this model in neural interface research.
Collapse
Affiliation(s)
- Shubham Debnath
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723
| | | | - Shijia Geng
- The Center for Computational Science, University of Miami, Coral Gables, FL 33146
| | | | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| |
Collapse
|