1
|
Thielen B, Xu H, Fujii T, Rangwala SD, Jiang W, Lin M, Kammen A, Liu C, Selvan P, Song D, Mack WJ, Meng E. Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acb086. [PMID: 36603221 PMCID: PMC9928900 DOI: 10.1088/1741-2552/acb086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
There are many electrode types for recording and stimulating neural tissue, most of which necessitate direct contact with the target tissue. These electrodes range from large, scalp electrodes which are used to non-invasively record averaged, low frequency electrical signals from large areas/volumes of the brain, to penetrating microelectrodes which are implanted directly into neural tissue and interface with one or a few neurons. With the exception of scalp electrodes (which provide very low-resolution recordings), each of these electrodes requires a highly invasive, open brain surgical procedure for implantation, which is accompanied by significant risk to the patient. To mitigate this risk, a minimally invasive endovascular approach can be used. Several types of endovascular electrodes have been developed to be delivered into the blood vessels in the brain via a standard catheterization procedure. In this review, the existing body of research on the development and application of endovascular electrodes is presented. The capabilities of each of these endovascular electrodes is compared to commonly used direct-contact electrodes to demonstrate the relative efficacy of the devices. Potential clinical applications of endovascular recording and stimulation and the advantages of endovascular versus direct-contact approaches are presented.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Huijing Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tatsuhiro Fujii
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani D. Rangwala
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Neurorestoration Center, University of Southern California, Los Angeles, CA, USA
| | - Pradeep Selvan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Meikle SJ, Wong YT. Neurophysiological considerations for visual implants. Brain Struct Funct 2021; 227:1523-1543. [PMID: 34773502 DOI: 10.1007/s00429-021-02417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
Neural implants have the potential to restore visual capabilities in blind individuals by electrically stimulating the neurons of the visual system. This stimulation can produce visual percepts known as phosphenes. The ideal location of electrical stimulation for achieving vision restoration is widely debated and dependent on the physiological properties of the targeted tissue. Here, the neurophysiology of several potential target structures within the visual system will be explored regarding their benefits and downfalls in producing phosphenes. These regions will include the lateral geniculate nucleus, primary visual cortex, visual area 2, visual area 3, visual area 4 and the middle temporal area. Based on the existing engineering limitations of neural prostheses, we anticipate that electrical stimulation of any singular brain region will be incapable of achieving high-resolution naturalistic perception including color, texture, shape and motion. As improvements in visual acuity facilitate improvements in quality of life, emulating naturalistic vision should be one of the ultimate goals of visual prostheses. To achieve this goal, we propose that multiple brain areas will need to be targeted in unison enabling different aspects of vision to be recreated.
Collapse
Affiliation(s)
- Sabrina J Meikle
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
- Department of Physiology and Biomedicine Discovery Institute, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
- Monash Vision Group, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
| | - Yan T Wong
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
- Department of Physiology and Biomedicine Discovery Institute, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
- Monash Vision Group, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
| |
Collapse
|
3
|
Allison-Walker TJ, Ann Hagan M, Chiang Price NS, Tat Wong Y. Local field potential phase modulates neural responses to intracortical electrical stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3521-3524. [PMID: 33018763 DOI: 10.1109/embc44109.2020.9176186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cortical visual prostheses could one day help restore sight to the blind by targeting the visual cortex with electrical stimulation. However, power consumption and limited spatial resolution impose limits on performance, while large amounts of electrical charge sometimes necessary to evoke phosphenes can cause seizures. Here, we propose the use of the local field potential as a control signal for the timing of stimulation to reduce charge requirements. In Sprague-Dawley rats, visual cortex was electrically stimulated at random times, and neural responses recorded. Electrical stimulation at specific phases of the local field potential required smaller amounts of charge to elicit spikes than naïve stimulation. Incorporating this into prosthesis design could improve their safety and efficacy.
Collapse
|