1
|
Dadashzadeh A, Moghassemi S, Amorim CA. Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering. Tissue Eng Part A 2024. [PMID: 38534964 DOI: 10.1089/ten.tea.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
This study addresses a critical challenge in bioprinting for regenerative medicine, specifically the issue of hypoxia compromising cell viability in engineered tissues. To overcome this hurdle, a novel approach using a microfluidic bioprinter is used to create a two-layer structure resembling the human ovary. This structure incorporates a liposomal oxygen-releasing system to enhance cell viability. The bioprinting technique enables the simultaneous extrusion of two distinct bioinks, namely, bioink A (comprising alginate 1% and 5 mg/mL PEGylated fibrinogen in a 20:1 molar ratio) and bioink B (containing alginate 0.5%). In addition, liposomal catalase and hydrogen peroxide (H2O2) are synthesized and incorporated into bioinks A and B, respectively. The liposomes are prepared using thin film hydration with a monodisperse size (140-160 nm) and high encapsulation efficiency. To assess construct functionality, isolated human ovarian cells are added to bioink A. The bioprinted constructs, with or without liposomal oxygen-releasing systems, are cultured under hypoxic and normoxic conditions for 3 days. Live/Dead assay results demonstrate that liposomal oxygen-releasing systems effectively preserve cell viability in hypoxic conditions, resembling viability under normoxic conditions without liposomes. PrestoBlue assay reveals significantly higher mitochondrial activity in constructs with liposomal oxygen delivery systems under both hypoxic and normoxic conditions. The evaluation of apoptosis status through annexin V immunostaining shows that liposomal oxygen-releasing scaffolds successfully protect cells from hypoxic stress, exhibiting a proportion of apoptotic cells similar to normoxic conditions. In contrast, constructs lacking liposomes in hypoxic conditions exhibit a higher incidence of cells in early-stage apoptosis. In conclusion, the study demonstrates the promising potential of bioprinted oxygen-releasing liposomal scaffolds to protect ovarian stromal cells in hypoxic environments. These innovative scaffolds not only offer protection but also recapitulate the mechanical differences between the medulla and the cortex in the normal ovary structure. This opens new avenues for advanced ovary tissue engineering and transplantation strategies.
Collapse
Affiliation(s)
- Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Moghassemi S, Dadashzadeh A, Camboni A, Feron O, Azevedo RB, Amorim CA. Photodynamic therapy using OR141-loaded nanovesicles for eradication of leukemic cells from ovarian tissue. Photodiagnosis Photodyn Ther 2022; 40:103139. [PMID: 36198387 DOI: 10.1016/j.pdpdt.2022.103139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
In 2020, the estimated number of new leukemia cases was higher than 30,000 in girls between 0 and 19 years old. Due to cancer treatment, some of these patients may lose both endocrine and reproductive functions. Transplantation of cryopreserved ovarian tissue is not advised after cancer remission because it has a high risk of reintroducing malignant cells in the patient, potentially leading to leukemia recurrence. To safely transplant the ovarian tissue from these patients and restore their fertility, our goal was to develop a photodynamic therapy (PDT) strategy to eliminate leukemia ex vivo. To this end, we designed, optimized, and characterized OR141-loaded niosomes (ORN) to develop the most effective formulation for ex vivo purging ovarian fragments from chronic myelogenous leukemia cells. After establishing the best ORN formulation, the PDT efficiency of optimized ORN was determined for human ovarian stromal cells and acute myeloid leukemia cell line (HL60). Blank niosomes treatment on ovarian stromal cells causes no significant toxicity, showing that the composition of the nanoparticle is not toxic. On the other hand, the in vitro studies showed that while ovarian stromal cells were still viable (82.04 ± 2.79%) after the treatment by 0.5 µM ORN, the same treatment yielded 95.43 ± 3.89% toxicity and cell death in the cancer cells. In conclusion, our results showed that our novel PDT procedure could be a promising strategy to destroy leukemia cells in ovarian tissue fragments allowing safe transplantation in cancer survivors.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Service d'Anatomie Pathologique, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Olivier Feron
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
3
|
Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S. Pharmaceutics 2022; 14:pharmaceutics14122626. [PMID: 36559121 PMCID: PMC9785864 DOI: 10.3390/pharmaceutics14122626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
These days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials with good characteristics for encapsulating drugs, due to their bioavailability and biodegradability, which allow the drugs to reach the specific target and reduce their side effects. In this work, the antibiotic Rifamycin S was encapsulated. The rifamycin antibiotics family has been widely used against Mycobacterium tuberculosis, but recent studies have also shown that rifamycin S and rifampicin derivatives have bactericidal activity against Staphylococcus epidermidis and Staphylococcus aureus. In this work, a strain of S. aureus was selected to study the antimicrobial activity through Minimum Inhibitory Concentration (MIC) assay. Three formulations of niosomes were prepared using the thin film hydration method by varying the composition of the aqueous phase, which included MilliQ water, glycerol solution, or PEG400 solution. Niosomes with a rifamycin S concentration of 0.13 μg/g were satisfactorily prepared. Nanovesicles with larger size and higher encapsulation efficiency (EE) were obtained when using glycerol and PEG400 in the aqueous media. Our results showed that niosomes consisting of an aqueous glycerol solution have higher stability and EE across a diversity of temperatures and pHs, and a lower MIC of rifamycin S against S. aureus.
Collapse
|
4
|
Vilela JDMV, Moghassemi S, Dadashzadeh A, Dolmans MM, Azevedo RB, Amorim CA. Safety of Lavender Oil-Loaded Niosomes for In Vitro Culture and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1999. [PMID: 35745338 PMCID: PMC9229298 DOI: 10.3390/nano12121999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
(1) Background: Essential oils have long been used as therapeutic agents. Lavender (Lavandula angustifolia) oil (LO) is an antispasmodic, anticonvulsant, relaxant, painkilling, and antimicrobial essential oil investigated as a natural substance for biomedical therapies. Nanoparticles have shown significant promise in improving drug delivery and efficacy. Considering these benefits, the aim of this study was to evaluate the toxicity of LO and lavender oil niosomes (LONs) in stem cells and myofibroblast models cultured in vitro. (2) Methods: Adipose tissue-derived stem cells and myometrial cells were cultured with LO or LONs at different concentrations (0, 0.016%, 0.031%, and 0.063%) and toxicity was evaluated with PrestoBlue™ and live/dead assay using calcein and ethidium homodimer. (3) Results: Cell viability was similar to controls in all groups, except in 0.063% LO for myometrial cells, which showed lower viability than the control medium. (4) Conclusion: These results suggest that both LO and LONs are safe for cell culture and may be used for pharmaceutical and biomedical therapies in future applications in regenerative medicine.
Collapse
Affiliation(s)
- Janice de M. V. Vilela
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
- Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| |
Collapse
|
5
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Nano-soldiers Ameliorate Silibinin Delivery: A Review Study. Curr Drug Deliv 2020; 17:15-22. [PMID: 31721702 DOI: 10.2174/1567201816666191112113031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Flavonoids are a large group of naturally occurring compounds, which are of interest due to their great pharmacological effects and health-promoting impacts. These properties have led to their extensive application in a variety of pathological conditions, particularly cancer. Flavonoids are used in large quantities in a human's daily diet and a high amount of flavonoids are found in the intestine after oral usage. However, flavonoid concentrations in tissue/plasma are low because of their low bioavailability, the leading to the low efficacy of flavonoids in different clinical disorders. For this reason, nanotechnology application for delivering flavonoids to tumor sites has recently received significant attention. Silibinin is a key member of flavonoids and a bioactive component of silymarin, which is widely isolated from Silybum marianum. This plant-derived chemical has a number of valuable biological and therapeutic activities such as antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, cardioprotective and anti-diabetic. These beneficial effects have been demonstrated in in vivo and in vitro experiments. However, it seems that silibinin has a variety of limitations and poor bioavailability is the most important factor restricting its wide application. Hence, there have been attempts to improve the bioavailability of silibinin and it has been suggested that nano-soldiers are potential candidates for this aim. In the present review, we describe the different drug delivery systems for improving the bioavailability of silibinin.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|