1
|
Parvin N, Kumar V, Mandal TK, Joo SW. Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics. J Funct Biomater 2024; 15:226. [PMID: 39194664 DOI: 10.3390/jfb15080226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Shi Y, Li J, Li K, Zhang X, Chang P, Huang Z, Liu Y, Wang Y, Zhan Y, Cao X, Zhu S. Detector-trigger-based cardiac multiphase micro-CT imaging for small animals. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:1047-1066. [PMID: 37483057 DOI: 10.3233/xst-230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Micro-computed tomography is important in cardiac imaging for preclinical small animal models, but motion artifacts may appear due to the rapid heart rates. To avoid influence of motion artifacts, the prospective ECG gating schemes based on an X-ray source trigger have been investigated. However, due to the lack of pulsed X-ray exposure modes, high-resolution micro-focus X-ray sources do not support source triggering in most cases. OBJECTIVE To develop a fast-cardiac multiphase acquisition strategy using prospective ECG gating for micro-focus X-ray tubes with a continuous emission mode. METHODS The proposed detector-trigger-based prospective ECG gating acquisition scheme (DTB-PG) triggers the X-ray detector at the R peak of ECG, and then collects multiple phase projections of the heart in one ECG cycle by sequence acquisition. Cardiac multiphase images are reconstructed after performing the same acquisition in all views. The feasibility of this strategy was verified in multiphase imaging experiments of a phantom with 150 ms motion period and a mouse heart on a micro-focus micro-CT system with continuous emission mode. RESULTS Using a high frame-rate CMOS detector, DTB-PG discriminates the positions of the motion phantom well in 10 different phases and enables to distinguish the changes in the cardiac volume of the mouse in different phases. The acquisition rate of DTB-PG is much faster than other prospective gating schemes as demonstrated by theoretical analysis. CONCLUSIONS DTB-PG combines the advantages of prospective ECG gating strategies and X-ray detector-trigger mode to suppress motion artifacts, achieve ultra-fast acquisition rates, and relax hardware limitations.
Collapse
Affiliation(s)
- Yu Shi
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Juntao Li
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xuexue Zhang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Peng Chang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Zujian Huang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yanyun Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yihan Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xu Cao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| |
Collapse
|