1
|
Wong-Siegel JR, Glatz AC, McCracken C, Lee C, Kitahara CM, Veiga LHS, Zhang Y, Goldstein BH, Petit CJ, Qureshi AM, Nicholson GT, Law MA, Meadows J, Shahanavaz S, O'Byrne ML, Batlivala SP, Pettus J, Beshish A, Mascio CE, Romano JC, Stack KO, Asztalos I, Downing TE, Zampi JD. Cumulative Radiation Exposure and Lifetime Cancer Risk in Patients With Tetralogy of Fallot Requiring Early Intervention. JACC. ADVANCES 2024; 3:101239. [PMID: 39290814 PMCID: PMC11406038 DOI: 10.1016/j.jacadv.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Background Neonates with tetralogy of Fallot and symptomatic cyanosis (sTOF) require early intervention, utilizing either a staged repair (SR) or primary repair (PR) approach. They are exposed to several sources of low-dose ionizing radiation, which may contribute to increased cancer risk. Objectives The purpose of this study was to compare cumulative radiation exposure and associated lifetime attributable risk (LAR) of cancer between treatment strategies in sTOF. Methods Neonates with sTOF who underwent SR or PR from 2012 to 2017 were retrospectively reviewed from the Congenital Cardiac Research Collaborative. Radiation exposure from all radiologic studies prior to 18 months of age was converted to organ-equivalent doses and projected LAR of cancer incidence using the National Cancer Institute dosimetry tools. Results There were 242 neonates from 8 centers, including patients with 146 SR and 96 PR. Cumulative total effective dose was significantly higher for SR (median 8.3 mSv, IQR: 3.0-17.4 mSv) than PR (2.1 mSv, IQR: 0.8-8.5 mSv; P < 0.001). Cumulative organ-level doses were significantly higher in SR compared to PR. Regardless of treatment strategy, LARs were higher in females compared to males. Among organs with median exposure >1 mGy in females, the LAR was highest for breast in SR (mean 1.9/1,000 patients). The highest proportion of cancers attributable to radiation exposure was projected for thyroid cancer in females undergoing SR (7.3%). Conclusions Cumulative radiation exposure and LARs were higher among those undergoing SR compared to PR. This will be an important factor to consider in determining the preferred neonatal treatment strategy and should substantiate efforts to reduce radiation exposure in this vulnerable population.
Collapse
Affiliation(s)
- Jeannette R Wong-Siegel
- The Heart Center, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew C Glatz
- The Heart Center, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Courtney McCracken
- Center for Research and Evaluation, Kaiser Permanente, Atlanta, Georgia, USA
| | - Choonsik Lee
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Lene H S Veiga
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Yun Zhang
- New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Bryan H Goldstein
- Heart Institute, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher J Petit
- New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Athar M Qureshi
- The Lillie Frank Abercrombie Division of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - George T Nicholson
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark A Law
- Children's of Alabama, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffery Meadows
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Shabana Shahanavaz
- Heart Institute, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael L O'Byrne
- The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarosh P Batlivala
- Heart Institute, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joelle Pettus
- Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Asaad Beshish
- Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher E Mascio
- West Virginia University Medicine Children's Hospital, Morgantown, West Virginia, USA
| | - Jennifer C Romano
- C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Kathyrn O Stack
- The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ivor Asztalos
- The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tacy E Downing
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Jeffrey D Zampi
- C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Carter LM, Zanzonico PB. MIB Guides: Preclinical Radiopharmaceutical Dosimetry. Mol Imaging Biol 2024; 26:17-28. [PMID: 37964036 DOI: 10.1007/s11307-023-01868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Preclinical dosimetry is essential for guiding the design of animal radiopharmaceutical biodistribution, imaging, and therapy experiments, evaluating efficacy and/or toxicities in such experiments, ensuring compliance with ethical standards for animal research, and, perhaps most importantly, providing reasonable initial estimates of normal-organ doses in humans, required for clinical translation of new radiopharmaceuticals. This MIB Guide provides a basic protocol for obtaining preclinical dosimetry estimates with organ-level dosimetry software.
Collapse
Affiliation(s)
- Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Carter LM, Zanzonico PB. MIB Guides: Preclinical radiopharmaceutical dosimetry. RESEARCH SQUARE 2023:rs.3.rs-3225362. [PMID: 37645915 PMCID: PMC10462246 DOI: 10.21203/rs.3.rs-3225362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Preclinical dosimetry is essential for guiding the design of animal radiopharmaceutical biodistribution, imaging, and therapy experiments, evaluating efficacy and/or toxicities in such experiments, ensuring compliance with ethical standards for animal research, and providing reasonable initial estimates of normal-organ doses in humans, required for clinical translation of new radiopharmaceuticals. This MIB guide provides a basic protocol for obtaining preclinical dosimetry estimates with organ-level dosimetry software.
Collapse
Affiliation(s)
- Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Coleman D, Griffin KT, Dewji SA. Stylized versus voxel phantoms: quantification of internal organ chord length distances. Phys Med Biol 2023; 68. [PMID: 36780697 DOI: 10.1088/1361-6560/acbbb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Dosimetric calculations, whether for radiation protection or nuclear medicine applications, are greatly influenced by the use of computational models of humans, called anthropomorphic phantoms. As anatomical models of phantoms have evolved and expanded, thus has the need for quantifying differences among each of these representations that yield variations in organ dose coefficients, whether from external radiation sources or internal emitters. This work represents an extension of previous efforts to quantify the differences in organ positioning within the body between a stylized and voxel phantom series. Where prior work focused on the organ depth distribution vis-à-vis the surface of the phantom models, the work described here quantifies the intra-organ and inter-organ distributions through calculation of the mean chord lengths. The revised Oak Ridge National Laboratory stylized phantom series and the University of Florida/National Cancer Institute voxel phantom series including a newborn, 1-, 5-, 10- and 15 year old, and adult phantoms were compared. Organ distances in the stylized phantoms were computed using a ray-tracing technique available through Monte Carlo radiation transport simulations in MCNP6. Organ distances in the voxel phantom were found using phantom matrix manipulation. Quantification of differences in organ chord lengths between the phantom series displayed that the organs of the stylized phantom series are typically situated farther away from one another than within the voxel phantom series. The impact of this work was to characterize the intra-organ and inter-organ distributions to explain the variations in updated internal dose coefficient quantities (i.e. specific absorbed fractions) while providing relevant data defining the spatial and volumetric organ distributions in the phantoms for use in subsequent internal dosimetric computations, with prospective relevance to patient-specific individualized dosimetry, as well as informing machine learning definition of organs using these reference models.
Collapse
Affiliation(s)
- D Coleman
- University of Wisconsin-Madison, Department of Medical Physics 1111 Highland Ave Rm 1005, Madison, WI 53705-2275, United States of America
| | - K T Griffin
- National Cancer Institute, Radiation Epidemiology Branch, 9609 Medical Center Drive MSC 9776, Bethesda, MD 20892-2590, United States of America.,Georgia Institute of Technology, Nuclear and Radiological Engineering and Medical Physics Programs, 770 State Street, Atlanta, GA 30332-0405, United States of America
| | - S A Dewji
- Georgia Institute of Technology, Nuclear and Radiological Engineering and Medical Physics Programs, 770 State Street, Atlanta, GA 30332-0405, United States of America
| |
Collapse
|
6
|
Villoing D, Kwon TE, Pasqual E, Kitahara CM, Lee C. Organ dose calculator for diagnostic nuclear medicine patients based on the ICRP reference voxel phantoms and biokinetic models. Biomed Phys Eng Express 2022; 9:10.1088/2057-1976/aca543. [PMID: 36541462 PMCID: PMC10829005 DOI: 10.1088/2057-1976/aca543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The exponential growth in the use of nuclear medicine procedures represents a general radiation safety concern and stresses the need to monitor exposure levels and radiation-related long term health effects in NM patients. In the current study, following our previous work on NCINM version 1 based on the UF/NCI hybrid phantom series, we calculated a comprehensive library of S values using the ICRP reference pediatric and adult voxel phantoms and established a library of biokinetic data from multiple ICRP Publications, which were then implemented into NCINM version 2. We calculated S values in two steps: calculation of specific absorbed fraction (SAF) using a Monte Carlo radiation transport code combined with the twelve ICRP pediatric and adult voxel phantoms for a number of combinations of source and target region pairs; derivation of S values from the SAFs using the ICRP nuclear decay data. We also adjusted the biokinetic data of 105 radiopharmaceuticals from multiple ICRP publications to match the anatomical description of the ICRP voxel phantoms. Finally, we integrated the ICRP phantom-based S values and adjusted biokinetic data into NCINM version 2. The ratios of cross-fire SAFs from NCINM 2 to NCINM 1 for the adult phantoms varied widely from 0.26 to 5.94 (mean = 1.24, IQR = 0.77-1.55) whereas the ratios for the pediatric phantoms ranged from 0.64 to 1.47 (mean = 1.01, IQR = 0.98-1.03). The ratios of absorbed dose coefficients from NCINM 2 over those from ICRP publications widely varied from 0.43 (colon for99mTc-ECD) to 2.57 (active marrow for99mTc-MAG3). NCINM 2.0 should be useful for dosimetrists and medical physicists to more accurately estimate organ doses for various nuclear medicine procedures.
Collapse
Affiliation(s)
- Daphnée Villoing
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States of America
| | - Tae-Eun Kwon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States of America
| | - Elisa Pasqual
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States of America
| | - Cari M Kitahara
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States of America
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
7
|
Iodine-131 S values for use in organ dose estimation of Korean patients in radioiodine therapy. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE. Specific absorbed fractions for a revised series of the UF/NCI pediatric reference phantoms: internal photon sources. Phys Med Biol 2021; 66:035006. [PMID: 33142280 DOI: 10.1088/1361-6560/abc708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Assessment of radiation absorbed dose to internal organs of the body from the intake of radionuclides, or in the medical setting through the injection of radiopharmaceuticals, is generally performed based upon reference biokinetic models or patient imaging data, respectively. Biokinetic models estimate the time course of activity localized to source organs. The time-integration of these organ activity profiles are then scaled by the radionuclide S-value, which defines the absorbed dose to a target tissue per nuclear transformation in various source tissues. S-values are computed using established nuclear decay information (particle energies and yields), and a parameter termed the specific absorbed fraction (SAF). The SAF is the ratio of the absorbed fraction-fraction of particle energy emitted in the source tissue that is deposited in the target tissue-and the target organ mass. While values of the SAF may be computed using patient-specific or individual-specific anatomic models, they have been more widely available through the use of computational reference phantoms. In this study, we report on an extensive series of photon SAFs computed in a revised series of the University of Florida and the National Cancer Institute pediatric reference phantoms which have been modified to conform to the specifications embodied in the ICRP reference adult phantoms of Publication 110 (e.g. organs modeled, organ ID numbers, blood contribution to elemental compositions). Following phantom anatomical revisions, photon radiation transport simulations were performed using MCNPX v2.7 in each of the ten phantoms of the series-male and female newborn, 1 year old, 5 year old, 10 year old, and 15 year old-for 60 different tissues serving as source and/or target regions. A total of 25 photon energies were considered from 10 keV to 10 MeV along a logarithm energy grid. Detailed analyses were conducted of the relative statistical errors in the Monte Carlo target tissue energy deposition tallies at low photon energies and over all energies for source-target combinations at large intra-organ separation distances. Based on these analyses, various data smoothing algorithms were employed, including multi-point weighted data smoothing, and log-log interpolation at low energies (1 keV and 5 keV) using limiting SAF values based upon target organ mass to bound the interpolation interval. The final dataset is provided in a series of ten electronic supplemental files in MS Excel format. The results of this study were further used as the basis for assessing the radiative component of internal electron source SAFs as described in our companion paper (Schwarz et al 2021) for this same pediatric phantom series.
Collapse
Affiliation(s)
- Bryan C Schwarz
- Department of Radiology, University of Florida, Gainesville, FL 32611, United States of America
| | - William J Godwin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29407, United States of America
| | - Michael B Wayson
- Baylor Scott & White Health, Dallas, TX 76051, United States of America
| | - Shaheen A Dewji
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, United States of America
| | - Derek W Jokisch
- Department of Physics and Engineering, Francis Marion University, Florence, SC 29502, United States of America.,Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States of America
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, United States of America
| | - Wesley E Bolch
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| |
Collapse
|