1
|
Cook J, Mardanya S, Lu Q, Conner C, Snyder M, Zhang X, McMillen J, Watson G, Chang TR, Bian G. Observation of Gapped Topological Surface States and Isolated Surface Resonances in PdTe 2 Ultrathin Films. NANO LETTERS 2023; 23:1752-1757. [PMID: 36825889 DOI: 10.1021/acs.nanolett.2c04511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The superconductor PdTe2 is known to host bulk Dirac bands and topological surface states. The coexistence of superconductivity and topological surface states makes PdTe2 a promising platform for exploring topological superconductivity and Majorana bound states. In this work, we report the spectroscopic characterization of ultrathin PdTe2 films with thickness down to three monolayers (ML). In the 3 ML PdTe2 film, we observed spin-polarized surface resonance states, which are isolated from the bulk bands due to the quantum size effects. In addition, the hybridization of surface states on opposite faces leads to a thickness-dependent gap in the topological surface Dirac bands. Our photoemission results show clearly that the size of the hybridization gap increases as the film thickness is reduced. The observation of isolated surface resonances and gapped topological surface states sheds light on the applications of PdTe2 quantum films in spintronics and topological quantum computation.
Collapse
Affiliation(s)
- Jacob Cook
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Sougata Mardanya
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Qiangsheng Lu
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Clayton Conner
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Matthew Snyder
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaoqian Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - James McMillen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Geoff Watson
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort), Tainan 70101, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Guang Bian
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Piatti E, Guglielmero L, Tofani G, Mezzetta A, Guazzelli L, D'Andrea F, Roddaro S, Pomelli CS. Ionic liquids for electrochemical applications: Correlation between molecular structure and electrochemical stability window. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Piatti E, Montagna Bozzone J, Daghero D. Anomalous Metallic Phase in Molybdenum Disulphide Induced via Gate-Driven Organic Ion Intercalation. NANOMATERIALS 2022; 12:nano12111842. [PMID: 35683696 PMCID: PMC9181884 DOI: 10.3390/nano12111842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transition metal dichalcogenides exhibit rich phase diagrams dominated by the interplay of superconductivity and charge density waves, which often result in anomalies in the electric transport properties. Here, we employ the ionic gating technique to realize a tunable, non-volatile organic ion intercalation in bulk single crystals of molybdenum disulphide (MoS2). We demonstrate that this gate-driven organic ion intercalation induces a strong electron doping in the system without changing the pristine 2H crystal symmetry and triggers the emergence of a re-entrant insulator-to-metal transition. We show that the gate-induced metallic state exhibits clear anomalies in the temperature dependence of the resistivity with a natural explanation as signatures of the development of a charge-density wave phase which was previously observed in alkali-intercalated MoS2. The relatively large temperature at which the anomalies are observed (∼150 K), combined with the absence of any sign of doping-induced superconductivity down to ∼3 K, suggests that the two phases might be competing with each other to determine the electronic ground state of electron-doped MoS2.
Collapse
|
4
|
Band Structure of Organic-Ion-Intercalated (EMIM) xFeSe Superconductor. MATERIALS 2022; 15:ma15051856. [PMID: 35269087 PMCID: PMC8911679 DOI: 10.3390/ma15051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022]
Abstract
The band structure and the Fermi surface of the recently discovered superconductor (EMIM)xFeSe are studied within the density functional theory in the generalized gradient approximation. We show that the bands near the Fermi level are formed primarily by Fe-d orbitals. Although there is no direct contribution of EMIM orbitals to the near-Fermi level states, the presence of organic cations leads to a shift of the chemical potential. It results in the appearance of small electron pockets in the quasi-two-dimensional Fermi surface of (EMIM)xFeSe.
Collapse
|
5
|
Paolucci F, Crisá F, De Simoni G, Bours L, Puglia C, Strambini E, Roddaro S, Giazotto F. Electrostatic Field-Driven Supercurrent Suppression in Ionic-Gated Metallic Superconducting Nanotransistors. NANO LETTERS 2021; 21:10309-10314. [PMID: 34851117 DOI: 10.1021/acs.nanolett.1c03481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent experiments have shown the possibility of tuning the transport properties of metallic nanosized superconductors through a gate voltage. These results renewed the longstanding debate on the interaction between electrostatic fields and superconductivity. Indeed, different works suggested competing mechanisms as the cause of the effect: an unconventional electric field-effect or quasiparticle injection. Here, we provide conclusive evidence for the electrostatic-field-driven control of the supercurrent in metallic nanosized superconductors, by realizing ionic-gated superconducting field-effect nanotransistors (ISFETs) where electron injection is impossible. Our Nb ISFETs show giant suppression of the superconducting critical current of up to ∼45%. Moreover, the bipolar supercurrent suppression observed in different ISFETs, together with invariant critical temperature and normal-state resistance, also excludes conventional charge accumulation/depletion. Therefore, the microscopic explanation of this effect calls upon a novel theory able to describe the nontrivial interaction of static electric fields with conventional superconductivity.
Collapse
Affiliation(s)
- Federico Paolucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Francesco Crisá
- Department of Physics "E. Fermi", Universitá di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
| | - Giorgio De Simoni
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Lennart Bours
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Claudio Puglia
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Elia Strambini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Stefano Roddaro
- Department of Physics "E. Fermi", Universitá di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
| | - Francesco Giazotto
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| |
Collapse
|