1
|
Kouanfack C, Unal G, Schaeffer L, Kfutwah A, Aghokeng A, Mougnutou R, Tchemgui-Noumsi N, Alessandri-Gradt E, Delaporte E, Simon F, Vray M, Plantier JC. Comparative Immunovirological and Clinical Responses to Antiretroviral Therapy Between HIV-1 Group O and HIV-1 Group M Infected Patients. Clin Infect Dis 2021; 70:1471-1477. [PMID: 31063537 DOI: 10.1093/cid/ciz371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/06/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Little is known about impact of genetic divergence of human immunodeficiency virus type 1 group O (HIV-1/O) relative to HIV-1 group M (HIV-1/M) on therapeutic outcomes. We aimed to determine if responses to standardized combination antiretroviral therapy (cART) were similar between groups despite strain divergence. METHODS We performed an open nonrandomized study comparing the immunological, virological, and clinical responses to cART based on 2 nucleoside reverse transcriptase inhibitors plus 1 ritonavir-boosted protease inhibitor, in naive and paired HIV-1/O vs HIV-1/M infected (+) patients (ratio 1:2), matched on several criteria. The primary endpoint was the proportion of patients with undetectable plasma viral load (pVL, threshold 60 copies/mL) at week (W) 48. Secondary endpoints were the proportion of patients with undetectable pVL at W24 and W96 and CD4 evolution between baseline and W24, W48, and W96. RESULTS Forty-seven HIV-1/O+ and 94 HIV-1/M+ patients were included. Mean pVL at baseline was significantly lower by 1 log for HIV-1/O+ vs HIV-1/M+ patients. At W48, no significant difference was observed between populations with undetectable pVL and differences at W24 and W96 were not significant. A difference in CD4 gain was observed in favor of HIV-1/M at W48 and W96, but this was not significant when adjusted on both matched criteria and pVL at baseline. CONCLUSIONS Our data demonstrate similar immunovirological and clinical response between HIV-1/O+ and HIV-1/M+ patients. They also reveal significantly lower baseline replication for HIV-1/O variants, suggesting specific virological properties and physiopathology that now need to be addressed. CLINICAL TRIALS REGISTRATION NCT00658346.
Collapse
Affiliation(s)
- Charles Kouanfack
- Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Yaoundé Central Hospital, Cameroon
| | - Guillemette Unal
- Normandy Université, Université de Rouen Normandie, Groupe de Recherche sur l'Adaptation Microbienne, EA Rouen University Hospital, Laboratory of Virology associated with the National Reference Centre for HIV
| | - Laura Schaeffer
- Unit of Epidemiology of Emerging Diseases, Institut Pasteur, Paris, France
| | | | - Avelin Aghokeng
- Recherche Translationnelle sur le VIH et les Maladies Infectieuses, University of Montpellier, Institut de Recherche et pour le Développement, Institut National de la Santé et de la Recherche Médicale
| | - Rose Mougnutou
- Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Yaoundé Central Hospital, Cameroon
| | - Nathalie Tchemgui-Noumsi
- Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Yaoundé Central Hospital, Cameroon
| | - Elodie Alessandri-Gradt
- Normandy Université, Université de Rouen Normandie, Groupe de Recherche sur l'Adaptation Microbienne, EA Rouen University Hospital, Laboratory of Virology associated with the National Reference Centre for HIV
| | - Eric Delaporte
- Recherche Translationnelle sur le VIH et les Maladies Infectieuses, University of Montpellier, Institut de Recherche et pour le Développement, Institut National de la Santé et de la Recherche Médicale
| | - François Simon
- Faculty of Medicine Paris Diderot, University Hospital Saint Louis, Paris, France
| | - Muriel Vray
- Unit of Epidemiology of Emerging Diseases, Institut Pasteur, Paris, France
| | - Jean-Christophe Plantier
- Normandy Université, Université de Rouen Normandie, Groupe de Recherche sur l'Adaptation Microbienne, EA Rouen University Hospital, Laboratory of Virology associated with the National Reference Centre for HIV
| | | |
Collapse
|
2
|
Park JH, Sayer JM, Aniana A, Yu X, Weber IT, Harrison RW, Louis JM. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Biochemistry 2016; 55:2390-400. [PMID: 27039930 DOI: 10.1021/acs.biochem.6b00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have systematically validated the activity and inhibition of a HIV-1 protease (PR) variant bearing 17 mutations (PR(S17)), selected to represent high resistance by machine learning on genotype-phenotype data. Three of five mutations in PR(S17) correlating with major drug resistance, M46L, G48V, and V82S, and five of 11 natural variations differ from the mutations in two clinically derived extreme mutants, PR20 and PR22 bearing 19 and 22 mutations, respectively. PR(S17), which forms a stable dimer (<10 nM), is ∼10- and 2-fold less efficient in processing the Gag polyprotein than the wild type and PR20, respectively, but maintains the same cleavage order. Isolation of a model precursor of PR(S17) flanked by the 56-amino acid transframe region (TFP-p6pol) at its N-terminus, which is impossible upon expression of an analogous PR20 precursor, allowed systematic comparison of inhibition of TFP-p6pol-PR(S17) and mature PR(S17). Resistance of PR(S17) to eight protease inhibitors (PIs) relative to PR (Ki) increases by 1.5-5 orders of magnitude from 0.01 to 8.4 μM. Amprenavir, darunavir, atazanavir, and lopinavir, the most effective of the eight PIs, inhibit precursor autoprocessing at the p6pol/PR site with IC50 values ranging from ∼7.5 to 60 μM. Thus, this process, crucial for stable dimer formation, shows inhibition ∼200-800-fold weaker than that of the mature PR(S17). TFP/p6pol cleavage, which occurs faster, is inhibited even more weakly by all PIs except darunavir (IC50 = 15 μM); amprenavir shows a 2-fold increase in IC50 (∼15 μM), and atazanavir and lopinavir show increased IC50 values of >42 and >70 μM, respectively.
Collapse
Affiliation(s)
- Joon H Park
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Jane M Sayer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | | | | | | | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Sayer JM, Aniana A, Louis JM. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor. J Mol Biol 2012; 422:230-44. [PMID: 22659320 PMCID: PMC3418415 DOI: 10.1016/j.jmb.2012.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
Dimerization is indispensible for release of the human immunodeficiency virus protease (PR) from its precursor (Gag-Pol) and ensuing mature-like catalytic activity that is crucial for virus maturation. We show that a single-chain Fv fragment (scFv) of a previously reported monoclonal antibody (mAb1696), which recognizes the N-terminus of PR, dissociates a dimeric mature D25N PR mutant with an enhanced dimer dissociation constant (K(d)) in the sub-micromolar range to form predominantly a monomer-scFv complex at a 1:1 ratio, along with small (5-10%) amounts of a dimer-scFv complex. Enzyme kinetics indicate a mixed mechanism of inhibition of the wild-type PR, which exhibits a K(d)<10nM, with effects both on K(m) and k(cat) at an scFv-to-PR ratio of 10:1. ScFv binds to the N-terminal peptide P(1)QITLW(6) of PR and to PR monomers with dissociation constants of ≤30 nM and ~100 nM, respectively. Consistent with an ~400-fold increase in the dissociation of the antibody (K(Ab)) on even addition of an acetyl group to P(1) of the peptide, the antibody fails to inhibit N-terminal autoprocessing of the PR from a model precursor (at ~5 μM). However, subsequent to this cleavage, it sequesters the PR, thus blocking autoprocessing at its C-terminus. A second monoclonal antibody [PRM1 (human monoclonal antibody to PR)], which recognizes part of the flap region (residues 41-47) of the mature PR and its precursor, does not inhibit autoprocessing and ensuing catalytic activity. However, its failure to recognize drug-resistant clinical mutants of PR may be beneficial to monitor the selection of mutations in this region under drug pressure.
Collapse
Affiliation(s)
| | | | - John M. Louis
- Corresponding author: John M. Louis, Building 5, Room B2-29, LCP, NIDDK, NIH, Bethesda, MD 20892-0520, Tel. 301 594-3122; Fax. 301 480-4001;
| |
Collapse
|
4
|
Sayer JM, Agniswamy J, Weber IT, Louis JM. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance. Protein Sci 2011; 19:2055-72. [PMID: 20737578 DOI: 10.1002/pro.486] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mature protease from Group N human immunodeficiency virus Type 1 (HIV-1) (PR1(N)) differs in 20 amino acids from the extensively studied Group M protease (PR1(M)) at positions corresponding to minor drug-resistance mutations (DRMs). The first crystal structure (1.09 Å resolution) of PR1(N) with the clinical inhibitor darunavir (DRV) reveals the same overall structure as PR1(M), but with a slightly larger inhibitor-binding cavity. Changes in the 10s loop and the flap hinge propagate to shift one flap away from the inhibitor, whereas L89F and substitutions in the 60s loop perturb inhibitor-binding residues 29-32. However, kinetic parameters of PR1(N) closely resemble those of PR1(M), and calorimetric results are consistent with similar binding affinities for DRV and two other clinical PIs, suggesting that minor DRMs coevolve to compensate for the detrimental effects of drug-specific major DRMs. A miniprecursor (TFR 1-61-PR1(N)) comprising the transframe region (TFR) fused to the N-terminus of PR1(N) undergoes autocatalytic cleavage at the TFR/PR1(N) site concomitant with the appearance of catalytic activity characteristic of the dimeric, mature enzyme. This cleavage is inhibited at an equimolar ratio of precursor to DRV (∼6 μM), which partially stabilizes the precursor dimer from a monomer. However, cleavage at L34/W35 within the TFR, which precedes the TFR 1-61/PR1(N) cleavage at pH ≤ 5, is only partially inhibited. Favorable properties of PR1(N) relative to PR1(M) include its suitability for column fractionation by size under native conditions and >10-fold higher dimer dissociation constant (150 nM). Exploiting these properties may facilitate testing of potential dimerization inhibitors that perturb early precursor processing steps.
Collapse
Affiliation(s)
- Jane M Sayer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
5
|
Stürmer M, Zimmermann K, Fritzsche C, Reisinger E, Doelken G, Berger A, Doerr HW, Eberle J, Gürtler LG. Regional spread of HIV-1 M subtype B in middle-aged patients by random env-C2V4 region sequencing. Med Microbiol Immunol 2010; 199:123-8. [PMID: 20217125 PMCID: PMC2854364 DOI: 10.1007/s00430-010-0145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Indexed: 11/30/2022]
Abstract
A transmission cluster of HIV-1 M:B was identified in 11 patients with a median age of 52 (range 26–65) in North-East Germany by C2V4 region sequencing of the env gene of HIV-1, who—except of one—were not aware of any risky behaviour. The 10 male and 1 female patients deteriorated immunologically, according to their information made available, within 4 years after a putative HIV acquisition. Nucleic acid sequence analysis showed a R5 virus in all patients and in 7 of 11 a crown motif of the V3 loop, GPGSALFTT, which is found rarely. Analysis of formation of this cluster showed that there is still a huge discrepancy between awareness and behaviour regarding HIV transmission in middle-aged patients, and that a local outbreak can be detected by nucleic acid analysis of the hypervariable env region.
Collapse
Affiliation(s)
- Martin Stürmer
- Institute for Medical Virology, University Hospital Frankfurt, Paul Ehrlich Str 40, 69596, Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Santos AFA, Lengruber RB, Soares EA, Jere A, Sprinz E, Martinez AMB, Silveira J, Sion FS, Pathak VK, Soares MA. Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients. PLoS One 2008; 3:e1781. [PMID: 18335052 PMCID: PMC2262134 DOI: 10.1371/journal.pone.0001781] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 01/29/2008] [Indexed: 11/18/2022] Open
Abstract
Background Although extensive HIV drug resistance information is available for the first 400 amino acids of its reverse transcriptase, the impact of antiretroviral treatment in C-terminal domains of Pol (thumb, connection and RNase H) is poorly understood. Methods and Findings We wanted to characterize conserved regions in RT C-terminal domains among HIV-1 group M subtypes and CRF. Additionally, we wished to identify NRTI-related mutations in HIV-1 RT C-terminal domains. We sequenced 118 RNase H domains from clinical viral isolates in Brazil, and analyzed 510 thumb and connection domain and 450 RNase H domain sequences collected from public HIV sequence databases, together with their treatment status and histories. Drug-naïve and NRTI-treated datasets were compared for intra- and inter-group conservation, and differences were determined using Fisher's exact tests. One third of RT C-terminal residues were found to be conserved among group M variants. Three mutations were found exclusively in NRTI-treated isolates. Nine mutations in the connection and 6 mutations in the RNase H were associated with NRTI treatment in subtype B. Some of them lay in or close to amino acid residues which contact nucleic acid or near the RNase H active site. Several of the residues pointed out herein have been recently associated to NRTI exposure or increase drug resistance to NRTI. Conclusions This is the first comprehensive genotypic analysis of a large sequence dataset that describes NRTI-related mutations in HIV-1 RT C-terminal domains in vivo. The findings into the conservation of RT C-terminal domains may pave the way to more rational drug design initiatives targeting those regions.
Collapse
Affiliation(s)
- André F. A. Santos
- Laboratório de Virologia Humana, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan B. Lengruber
- Laboratório de Virologia Humana, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Esmeralda A. Soares
- Laboratório de Virologia Humana, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Abhay Jere
- HIV Drug Resistance Program, National Cancer Insitute-Frederick, Frederick, Maryland, United States of America
| | - Eduardo Sprinz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Insitute-Frederick, Frederick, Maryland, United States of America
| | - Marcelo A. Soares
- Laboratório de Virologia Humana, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Unidade de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
7
|
Tebit DM, Zekeng L, Kaptué L, Gürtler L, Fackler OT, Keppler OT, Herchenröder O, Kräusslich HG. Construction and characterization of an HIV-1 group O infectious molecular clone and analysis of vpr- and nef-negative derivatives. Virology 2004; 326:329-39. [PMID: 15321704 DOI: 10.1016/j.virol.2004.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 05/28/2004] [Indexed: 11/25/2022]
Abstract
In this report, we describe the construction and characterization of the first full-length infectious molecular clone from the Cameroonian HIV-1 group O primary isolate MVP8913. Virus obtained after transfection of the proviral clone pCMO2.3 replicated to levels comparable to its parental isolate in the human T-cell line PM-1, although replication was reduced by fivefold in peripheral blood mononuclear cells (PBMC) and was barely detectable in primary monocyte-derived macrophages (MDM). Phylogenetic analysis of the complete proviral sequence revealed a closer relationship to ANT70 than to MVP5180, the two prototypic group O primary isolates. All reading frames for structural and accessory genes were open except for vpr that contained an in-frame stop codon. In the nef gene, a mutation disrupting the functionally important myristoylation signal was observed. Repairing the defect in nef enhanced replication in PBMC and MDM, although repairing the vpr defect only affected replication in MDM, consistent with the known phenotypes of vpr and nef mutants in HIV-1 group M viruses. Repairing both vpr and nef showed an additive effect, but the resulting virus was still impaired compared to the parental isolate. This defect was overcome when the gag-pol coding region was exchanged for that from another O-type isolate giving rise to the proviral clone pCMO2.5. Virus obtained from pCMO2.5 replicated with similar kinetics as the parental O-type isolate in both PBMC and MDM, making this proviral clone a valuable tool for further studies on functional characteristics of HIV-1 group O viruses.
Collapse
Affiliation(s)
- Denis M Tebit
- Abteilung Virologie, Universitätsklinikum Heidelberg, D-69ab0, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamaguchi J, Bodelle P, Kaptué L, Zekeng L, Gürtler LG, Devare SG, Brennan CA. Near full-length genomes of 15 HIV type 1 group O isolates. AIDS Res Hum Retroviruses 2003; 19:979-88. [PMID: 14678605 DOI: 10.1089/088922203322588332] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is classified into three distinct groups; M (major), N (non-M/non-O), and O (outlier). Group M strains are further subclassified into subtypes, subsubtypes, and circulating recombinant forms (CRF). While the level of genetic diversity within group O is similar to that between group M subtypes, group O has not been classified into subtypes. A previous study, based on the phylogenetic analyses of the gag p24, pol p32, and env gp160 sequences from 39 group O isolates, laid the foundation for the classification of group O subtypes. Five phylogenetic clusters, I-V, were identified that have characteristics analogous to group M subtypes. However, a complete phylogenetic analysis and classification of group O requires the availability of at least two full-length and one partial genomes for each group O phylogenetic cluster. In this study, 15 group O isolates were selected for full genome sequencing. Phylogenetic analysis of the 15 sequences with eight additional group O genomes supports the classification of three group O subtypes (I-III) and the potential existence of one CRF (IV) and at least one additional subtype (V). The group O subtypes are equidistant to each other and lack subsegments of other subtypes. The intra- and intersubtype genetic distances for group O are similar in magnitude to the corresponding distances for group M subtypes. Intersubtype recombination was identified in three of the 23 (13%) group O genomes. Formal classification of group O subtypes should be forthcoming pending the analysis of additional group O genomes and agreement of the HIV nomenclature committee.
Collapse
|
9
|
Papathanasopoulos MA, Hunt GM, Tiemessen CT. Evolution and diversity of HIV-1 in Africa--a review. Virus Genes 2003; 26:151-63. [PMID: 12803467 DOI: 10.1023/a:1023435429841] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The HIV/AIDS pandemic represents a major development crisis for the African continent, which is the worst affected region in the world. Currently, almost 30 of the 42 million people infected with HIV worldwide live in Africa. AIDS in humans is caused by two lentiviruses, HIV-1 and HIV-2, which entered the human population by zoonotic transmissions from at least two different African primate species. Extensive phylogenetic analyses of partial and full-length genome sequences have helped to gain insights into the evolutionary biology and population dynamics of HIV. One of the major characteristics of HIV is its rapid evolution, which has resulted in substantial genetic diversity amongst different isolates, the majority of which are represented in Africa. Genetic variability of HIV and any consequent phenotypic variation poses a significant challenge to disease control and surveillance in different geographic regions of Africa. This review focuses on the origins and evolution of HIV, current classification and diversity of HIV isolates in Africa and provides an extensive account of the geographic distribution of HIV types, groups, and subtypes in each of the 49 African countries. Numerous epidemiological studies have provided a picture of HIV distribution patterns in most countries in Africa, and these show increasing evidence of the importance of HIV-1 recombinants. In particular, this review highlights that our current understanding of HIV distribution in Africa is incomplete and inadequately represents the diversity of the virus, and underscores the need for ongoing surveillance.
Collapse
Affiliation(s)
- Maria A Papathanasopoulos
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Department of Virology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
10
|
Roques P, Robertson DL, Souquière S, Damond F, Ayouba A, Farfara I, Depienne C, Nerrienet E, Dormont D, Brun-Vézinet F, Simon F, Mauclère P. Phylogenetic analysis of 49 newly derived HIV-1 group O strains: high viral diversity but no group M-like subtype structure. Virology 2002; 302:259-73. [PMID: 12441070 DOI: 10.1006/viro.2002.1430] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assess the genetic relationships between 49 HIV-1 group O strains from 24 and 25 patients living in Cameroon and France, respectively. Strains were sequenced in four genomic regions: gag (p24) and three env regions (C2-V3, gp41, and for 22 C2-gp41). In each of the genomic regions analyzed, the genetic diversity among the group O strains was higher than that exhibited by group M. We characterize three major group O phylogenetic clusters (O:A, O:B, and O:C) that comprised the same virus strains in each of the genomic regions analyzed. The majority of strains cluster in O:A, a cluster previously identified by analysis of pol and env sequences. Group O recombinants were also identified. Importantly, the distinction between these three major group O clades was weak compared to the strong clustering apparent in the global group M phylogenetic tree that led to the identification of subtypes. Thus, these clusters of group O viruses should not be considered as equivalent to the group M subtypes. This difference between the pattern of group O and the global group M diversity, both taking into account the pandemic status of the group M subtypes and the comparatively small number of group O-infected individuals (the majority being from Cameroon), indicates that the group O phylogeny primarily represents viral divergence in the Cameroon region, analogous to group M viral diversity present in the Democratic Republic of Congo.
Collapse
Affiliation(s)
- P Roques
- Service de Neurovirologie, CEA, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|