1
|
Marra M, Catalano A, Sinicropi MS, Ceramella J, Iacopetta D, Salpini R, Svicher V, Marsico S, Aquaro S, Pellegrino M. New Therapies and Strategies to Curb HIV Infections with a Focus on Macrophages and Reservoirs. Viruses 2024; 16:1484. [PMID: 39339960 PMCID: PMC11437459 DOI: 10.3390/v16091484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
More than 80 million people worldwide have been infected with the human immunodeficiency virus (HIV). There are now approximately 39 million individuals living with HIV/acquired immunodeficiency syndrome (AIDS). Although treatments against HIV infection are available, AIDS remains a serious disease. Combination antiretroviral therapy (cART), also known as highly active antiretroviral therapy (HAART), consists of treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. However, the increasing usage of cART is inevitably associated with the emergence of HIV drug resistance. In addition, the development of persistent cellular reservoirs of latent HIV is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Thus, several efforts are being applied to new generations of drugs, vaccines and new types of cART. In this review, we summarize the antiviral therapies used for the treatment of HIV/AIDS, both as individual agents and as combination therapies, and highlight the role of both macrophages and HIV cellular reservoirs and the most recent clinical studies related to this disease.
Collapse
Affiliation(s)
- Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Iacob SA, Iacob DG. Ibalizumab Targeting CD4 Receptors, An Emerging Molecule in HIV Therapy. Front Microbiol 2017; 8:2323. [PMID: 29230203 PMCID: PMC5711820 DOI: 10.3389/fmicb.2017.02323] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
The HIV infection is responsible for the most devastating global pandemic of the last century. More than 39 million people have died of HIV/AIDS since 1981. The development of the antiretroviral (ARV) treatment begins with the discovery of zidovudine a nucleoside reverse transcriptase inhibitor. This breakthrough was followed by other ARV drug classes and representatives. Presently, HIV treatment employs 27 ARV representatives belonging to five different classes. Despite the proven benefits of ARV treatment and its long-term control of the HIV infection, there is an increasing concern about the numerous adverse effects and resistance to current ARV drugs. Therefore, the new HIV treatment strategies focus on the development of new ARV agents with a high genetic barrier to resistance and low toxicity. Monoclonal antibodies (MAbs) belong to a new drug class with encouraging results in the treatment of cancer, autoimmune disorders and most recently against HIV infection. The advantages of using MAbs for HIV treatment are related to their antiviral effect, lack of toxicity, good resistance profile, additional synergy with other ARV drug classes and ability to restore CD4 T-cell responses. The current article is a short summary of ibalizumab, an anti-CD4 monoclonal antibody that interferes with HIV viral entry. Current studies on ibalizumab have underlined its antiviral potential, minimal adverse effects, and lack of crossed resistance with other ARV agents thus supporting its further therapeutic use in multidrug resistant HIV-infected patients.
Collapse
Affiliation(s)
- Simona A Iacob
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana G Iacob
- National Institute for Infectious Diseases "Prof.dr. Matei Bals", Bucharest, Romania
| |
Collapse
|
3
|
McConville C, Boyd P, Major I. Efficacy of Tenofovir 1% Vaginal Gel in Reducing the Risk of HIV-1 and HSV-2 Infection. CLINICAL MEDICINE INSIGHTS. WOMEN'S HEALTH 2014; 7:1-8. [PMID: 24741339 PMCID: PMC3988671 DOI: 10.4137/cmwh.s10353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a retrovirus that can result in rare opportunistic infections occurring in humans. The onset of these infections is known as Acquired Immune Deficiency Syndrome (AIDS). Sexual transmission is responsible for the majority of infections 1, resulting in transmission of HIV due to infected semen or vaginal and cervical secretions containing infected lymphocytes. HIV microbicides are formulations of chemical or biological agents that can be applied to the vagina or rectum with the intention of reducing the acquisition of HIV. Tenofovir is an NRTI that is phosphorylated by adenylate kinase to tenofovir diphosphate, which in turn competes with deoxyadeosine 5’-triphosphate for incorporation into newly synthesized HIV DNA. Once incorporated, tenofovir diphosphate results in chain termination, thus inhibiting viral replication. Tenofovir has been formulated into a range of vaginal formulations, such as rings, tablets gels and films. It has been shown to safe and effective in numerous animal models, while demonstrating safety and acceptability in numerous human trials. The most encouraging results came from the CAPRISA 004 clinical trial which demonstrated that a 1% Tenofovir vaginal gel reduced HIV infection by approximately 39%.
Collapse
Affiliation(s)
- Christopher McConville
- Department of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Peter Boyd
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Westmeath, Ireland
| |
Collapse
|
4
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
5
|
Kang Y, Guo J, Chen Z. Closing the door to human immunodeficiency virus. Protein Cell 2013; 4:86-102. [PMID: 23479426 DOI: 10.1007/s13238-012-2111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022] Open
Abstract
The pandemic of human immunodeficiency virus type one (HIV-1), the major etiologic agent of acquired immunodeficiency disease (AIDS), has led to over 33 million people living with the virus, among which 18 million are women and children. Until now, there is neither an effective vaccine nor a therapeutic cure despite over 30 years of efforts. Although the Thai RV144 vaccine trial has demonstrated an efficacy of 31.2%, an effective vaccine will likely rely on a breakthrough discovery of immunogens to elicit broadly reactive neutralizing antibodies, which may take years to achieve. Therefore, there is an urgency of exploring other prophylactic strategies. Recently, antiretroviral treatment as prevention is an exciting area of progress in HIV-1 research. Although effective, the implementation of such strategy faces great financial, political and social challenges in heavily affected regions such as developing countries where drug resistant viruses have already been found with growing incidence. Activating latently infected cells for therapeutic cure is another area of challenge. Since it is greatly difficult to eradicate HIV-1 after the establishment of viral latency, it is necessary to investigate strategies that may close the door to HIV-1. Here, we review studies on non-vaccine strategies in targeting viral entry, which may have critical implications for HIV-1 prevention.
Collapse
Affiliation(s)
- Yuanxi Kang
- AIDS Institute and Department of Microbiology of Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
6
|
Abstract
Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.
Collapse
Affiliation(s)
- Rui Gong
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
7
|
Chen W, Dimitrov DS. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res Hum Retroviruses 2012; 28:425-34. [PMID: 21827278 DOI: 10.1089/aid.2011.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| |
Collapse
|
8
|
Bell TW, Demillo VG, Schols D, Vermeire K. Improving potencies and properties of CD4 down-modulating CADA analogs. Expert Opin Drug Discov 2011; 7:39-48. [PMID: 22468892 DOI: 10.1517/17460441.2012.643865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION CADA is a synthetic small molecule that inhibits HIV replication in cell cultures through down-modulating cell surface CD4 by inhibiting cotranslational translocation of nascent CD4 across the ER membrane in a signal sequence-specific manner. Analogs have been prepared mainly to increase potency and investigate the mechanism of action. AREAS COVERED This article reviews progress on discovery of more potent CADA analogs, including symmetrical and unsymmetrical compounds, as well as fluorescent derivatives. The article also discusses some properties of CADA and a more potent analog (KKD023) that are relevant to drug development, including aqueous solubility, permeability, metabolism and oral bioavailability. EXPERT OPINION Further studies on CADA analogs should focus on improving both potency and drug-like properties, and on elucidating the detailed mechanism of action. Solubility and permeability may be improved by reducing molecular weight, decreasing molecular flexibility and symmetry, or by a prodrug approach inducing active transport. Identifying the molecular mechanism of CD4 down-modulation may aid in assessing potential side effects of such immunomodulatory/anti-HIV drugs, and it could potentially lead to a general approach to designing drugs for specifically down-modulating other cell-surface proteins.
Collapse
Affiliation(s)
- Thomas W Bell
- University of Nevada, Department of Chemistry, Reno, Nevada 89557-0216, USA.
| | | | | | | |
Collapse
|
9
|
Demillo VG, Goulinet-Mateo F, Kim J, Schols D, Vermeire K, Bell TW. Unsymmetrical cyclotriazadisulfonamide (CADA) compounds as human CD4 receptor down-modulating agents. J Med Chem 2011; 54:5712-21. [PMID: 21800875 DOI: 10.1021/jm2002603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. The specific biomolecular target of CADA compounds is unknown, but previous studies led to an unsymmetrical binding model. To test this model, methods were developed for effective synthesis of diverse, unsymmetrical CADA compounds. A total of 13 new, unsymmetrical target compounds were synthesized, as well as one symmetrical analogue. The new compounds display a wide range of potency for CD4 down-modulation in CHO·CD4-YFP cells. VGD020 (IC(50) = 46 nM) is the most potent CADA compound discovered to date, and VGD029 (IC(50) = 730 nM) is the most potent fluorescent analogue. Structure-activity relationships are analyzed from the standpoint of additive or nonadditive energy effects of different substituents. They appear to be consistent with the zipper-type mechanism in which entropy costs are reduced for additional stabilizing interactions between the small molecule and its protein target.
Collapse
Affiliation(s)
- Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kim JM, Han SH. Immunotherapeutic restoration in HIV-infected individuals. Immunotherapy 2011; 3:247-67. [PMID: 21322762 DOI: 10.2217/imt.10.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While the development of combined active antiretroviral therapy (cART) has dramatically improved life expectancies and quality of life in HIV-infected individuals, long-term clinical problems, such as metabolic complications, remain important constraints of life-long cART. Complete immune restoration using only cART is normally unattainable even in cases of sufficient plasma viral suppression. The need for immunologic adjuncts that complement cART remains, because while cART alone may result in the complete recovery of peripheral net CD4+ T lymphocytes, it may not affect the reservoir of HIV-infected cells. Here, we review current immunotherapies for HIV infection, with a particular emphasis on recent advances in cytokine therapies, therapeutic immunization, monoclonal antibodies, immune-modulating drugs, nanotechnology-based approaches and radioimmunotherapy.
Collapse
Affiliation(s)
- June Myung Kim
- Department of Internal Medicine & AIDS Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
11
|
Freeman MM, Seaman MS, Rits-Volloch S, Hong X, Kao CY, Ho DD, Chen B. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody. Structure 2011; 18:1632-41. [PMID: 21134642 DOI: 10.1016/j.str.2010.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/07/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
Abstract
Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.
Collapse
Affiliation(s)
- Michael M Freeman
- Division of Molecular Medicine, Children's Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Bruno CJ, Jacobson JM. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother 2010; 65:1839-41. [PMID: 20639524 DOI: 10.1093/jac/dkq261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The majority of currently available agents for the treatment of HIV-1 infection act by targeting one of several intracellular steps in the viral life cycle. Despite improvements in efficacy and tolerability, the development of viral resistance to these agents is common and significant toxicity and adherence issues still occur. For this reason the development of safe, well tolerated antiviral agents that target a novel step in the viral life cycle remains important. Viral entry into host cells affords several potential extracellular targets for antiretroviral therapy. Ibalizumab, a humanized monoclonal antibody to CD4, the primary host cellular receptor for HIV-1 entry, has been shown to block HIV-1 entry in vitro. Early clinical trials have demonstrated significant antiviral efficacy with a >1 log(10) reduction in viral load when given as monotherapy. Its long half-life, which allows weekly dosing, and its administration as an intravenous infusion differentiate it from other currently available antiretroviral agents. These properties may prove useful in allowing improved drug delivery to patients who have had difficulty adhering to daily oral regimens. Its unique mode of action reduces the risk of cross-resistance with currently available antiretroviral agents, with the potential to expand the choices available to treat drug-resistant HIV-1.
Collapse
Affiliation(s)
- Christopher J Bruno
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
13
|
Ji C, Kopetzki E, Jekle A, Stubenrauch KG, Liu X, Zhang J, Rao E, Schlothauer T, Fischer S, Cammack N, Heilek G, Ries S, Sankuratri S. CD4-anchoring HIV-1 Fusion Inhibitor with Enhanced Potency and in Vivo Stability. J Biol Chem 2009; 284:5175-85. [DOI: 10.1074/jbc.m808745200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Ruuls SR, Lammerts van Bueren JJ, van de Winkel JGJ, Parren PWHI. Novel human antibody therapeutics: the age of the Umabs. Biotechnol J 2009; 3:1157-71. [PMID: 18702090 PMCID: PMC2959493 DOI: 10.1002/biot.200800110] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies represent a major and increasingly important category of biotechnology products for the treatment of human diseases. The state-of-the-art of antibody technology has evolved to the point where therapeutic monoclonal antibodies, that are practically indistinguishable from antibodies induced in humans, are routinely generated. We depict how our science-based approach can be used to further improve the efficacy of antibody therapeutics, illustrated by the development of three monoclonal antibodies for various cancer indications: zanolimumab (directed against CD4), ofatumumab (directed against CD20) and zalutumumab (directed against epidermal growth factor receptor).
Collapse
|
15
|
Novel antiviral agents targeting HIV entry and transmission. Virol Sin 2008. [DOI: 10.1007/s12250-007-0046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Rider DA, Havenith CEG, de Ridder R, Schuurman J, Favre C, Cooper JC, Walker S, Baadsgaard O, Marschner S, vandeWinkel JGJ, Cambier J, Parren PWHI, Alexander DR. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res 2007; 67:9945-53. [PMID: 17942927 DOI: 10.1158/0008-5472.can-07-1148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zanolimumab is a human IgG1 antibody against CD4, which is in clinical development for the treatment of cutaneous and nodal T-cell lymphomas. Here, we report on its mechanisms of action. Zanolimumab was found to inhibit CD4+ T cells by combining signaling inhibition with the induction of Fc-dependent effector mechanisms. First, T-cell receptor (TCR) signal transduction is inhibited by zanolimumab through a fast, dual mechanism, which is activated within minutes. Ligation of CD4 by zanolimumab effectively inhibits early TCR signaling events but, interestingly, activates signaling through the CD4-associated tyrosine kinase p56lck. An uncoupling of p56lck from the TCR by anti-CD4 allows the kinase to transmit direct inhibitory signals via the inhibitory adaptor molecules Dok-1 and SHIP-1. Second, CD4+ T cells are killed by induction of antibody-dependent cell-mediated cytotoxicity, to which CD45RO+ cells are more sensitive than CD45RA+ cells. Finally, zanolimumab induces down-modulation of CD4 from cell surfaces via a slow Fc-dependent mechanism. In conclusion, zanolimumab rapidly inhibits T-cell signaling via a dual mechanism of action combined with potent Fc-dependent lysis of CD4+ T cells and may act long-term by down-regulating CD4.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibody-Dependent Cell Cytotoxicity
- CD3 Complex/immunology
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Double-Blind Method
- Down-Regulation
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Lymphocyte Activation/drug effects
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/therapy
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Psoriasis/immunology
- Psoriasis/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- David A Rider
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Curr Top Microbiol Immunol 2007; 317:39-66. [PMID: 17990789 DOI: 10.1007/978-3-540-72146-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies are routinely used as therapeutics in a number of disease settings and have thus also been explored as potential treatment for human immunodeficiency virus (HIV)-1 infection. Antibodies targeting viral antigens, and those directed to the cellular receptors, have been considered for use in prevention and therapy. For virus-targeted antibodies, attention has focused primarily on their neutralizing activity, but such antibodies also have the potential to exert antiviral effects via effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), opsonization, or complement activation. Anti-cell antibodies act through occlusion or down-modulation of the viral receptors with notable impact in vivo, as recent trials have shown. This review summarizes the diverse specificities and modes of action of therapeutic antibodies against HIV-1 infection. Successes, challenges, and future opportunities of harnessing antibodies for therapy of HIV-1 infection are discussed.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Abstract
25 years after the first HIV/AIDS cases emerged in 1981, the disease continues to spread worldwide, with about 15 000 new infections every day. Although highly active antiretroviral therapy (HAART) has greatly reduced the rate of HIV infection, and the spread of the epidemic, this effect has largely been seen in developed countries. More than 90% of HIV-infected people live in developing countries, most of whom do not have access to this treatment. The development of efficient, widely available, and low-cost microbicides (gels and creams can be applied topically before sex) to prevent sexually transmitted HIV infections should be given high priority. We review different categories of microbicide drugs and lead compounds, their mechanism of action, current status of development, and progress in phase III trials.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K U Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
19
|
Abstract
There are many promising new agents in development for the treatment of HIV type 1 (HIV-1). The targets of antiretroviral drugs include the three major HIV-1 enzymes (reverse transcriptase, protease, and integrase), final packaging and export of mature virions, and entry mediated by the CD4 receptor and the CCR5 and CXCR4 coreceptors. Drugs in development in existing classes are primarily designed to provide new options for those with resistance to existing agents. Novel agents such as those targeting integrase, entry inhibitors, and those targeting viral processing likely will be useful the treatment of antiretroviral-experienced patients. Depending on safety, efficacy, tolerability, and convenience of dosing, new agents may also alter the current treatment paradigms for first-line therapy. This review summarizes data on several drugs that could move forward into the clinical arena and affect the lives of those infected with HIV-1.
Collapse
Affiliation(s)
- Caitlin Reed
- Division of HIV Medicine, Harbor-UCLA Medical Center, 1124 West Carson Street, N-24, Torrance, CA 90502, USA
| | | |
Collapse
|
20
|
Zhang XQ, Sorensen M, Fung M, Schooley RT. Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Chemother 2006; 50:2231-3. [PMID: 16723592 PMCID: PMC1479151 DOI: 10.1128/aac.00761-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.
Collapse
|
21
|
Abstract
Despite the availability of 21 antiretroviral drugs approved for the treatment of HIV infection, current combination regimens remain hampered by issues of toxicity, convenience, cost, incomplete viral suppression, and drug resistance. Expansion of the currently available therapeutic options through the reformulation of available agents, discovery of new compounds with antiretroviral activity, and the exploitation of novel drug targets are critical. This review describes the status of new nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, and fusion inhibitors. We also summarize new classes of antiretroviral therapy in clinical development including the attachment inhibitors, chemokine receptor antagonists, integrase inhibitors, and maturation inhibitors.
Collapse
Affiliation(s)
- Kimberly Hanson
- Duke University Medical Center, Division of Infectious Diseases and International Health, Box 3879, Durham, NC 27710, USA.
| | | |
Collapse
|
22
|
Bell TW, Anugu S, Bailey P, Catalano VJ, Dey K, Drew MGB, Duffy NH, Jin Q, Samala MF, Sodoma A, Welch WH, Schols D, Vermeire K. Synthesis and structure-activity relationship studies of CD4 down-modulating cyclotriazadisulfonamide (CADA) analogues. J Med Chem 2006; 49:1291-312. [PMID: 16480266 DOI: 10.1021/jm0582524] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.
Collapse
Affiliation(s)
- Thomas W Bell
- Department of Chemistry , University of Nevada, Reno, Nevada 89557, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vermeire K, Schols D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 2005; 14:1199-212. [PMID: 16185162 DOI: 10.1517/13543784.14.10.1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perhaps one of the most effective approaches to prevent and inhibit viral infections is to block host cell receptors that are used by viruses to gain cell entry. Major advances have been made over the past decade in the understanding of the molecular mechanism of HIV entry into target cells. A crucial step in this entry process is the interaction of the external HIV envelope glycoprotein, gp120, with the cellular CD4 receptor molecule. This binding step represents a potential target for new antiviral agents, and current efforts to develop safe and effective HIV entry inhibitors are focused on natural ligands and/or monoclonal antibodies that interfere with gp120/CD4 interaction. Also, small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design have recently entered the antiretroviral arena. In this review, the anti-HIV activity of novel entry inhibitors targeting gp120/CD4 interaction is outlined, and special attention is given to the cyclotriazadisulfonamide compounds, which are the most specific CD4-targeted antiviral drugs described so far.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
24
|
Abstract
Issues, such as complexity, tolerability, and drug resistance and cross-resistance, limit the effectiveness of current antiretroviral regimens and make the continued development of newer agents important, despite the availability of 20 approved drugs for the treatment of HIV infection. Many new compounds are in development in existing classes: nucleoside and nucleotide analogue reverse transcriptase inhibitors (eg, D-d4FC and SPD754), non-nucleoside analogue reverse transcriptase inhibitors (eg, capravirine and TMC125), and protease inhibitors (eg, tipranavir and TMC114). In addition, newer classes of antiretroviral drugs, such as HIV entry inhibitors (eg, TNX-355, SCH 417690, UK-427,857, AMD 11070), that target the first step in the HIV life cycle are under development. Continued improvement in the treatment of HIV infection will result from the availability of convenient, well-tolerated, and affordable drugs with potent and durable antiretroviral activity.
Collapse
Affiliation(s)
- Kristen Marks
- Weill Medical College of Cornell University, Cornell Clinical Trials Unit, New York, NY 10021, USA
| | | |
Collapse
|
25
|
Castagna A, Biswas P, Beretta A, Lazzarin A. The appealing story of HIV entry inhibitors : from discovery of biological mechanisms to drug development. Drugs 2005; 65:879-904. [PMID: 15892586 DOI: 10.2165/00003495-200565070-00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Current therapeutic intervention in HIV infection relies upon 20 different drugs. Despite the impressive efficacy shown by these drugs, we are confronted with an unexpected frequency of adverse effects, such as mitochondrial toxicity and lipodystrophy, and resistance, not only to individual drugs but to entire drug classes.Thus, there is now a great need for new antiretroviral drugs with reduced toxicity, increased activity against drug-resistant viruses and a greater capacity to reach tissue sanctuaries of the virus. Two different HIV molecules have been selected as targets of drug inhibition so far: reverse transcriptase and protease. Drugs that target the interactions between the HIV envelope and the cellular receptor complex are a 'new entry' into the scenario of HIV therapy and have recently raised great interest because of their activity against multidrug-resistant viruses. There are several compounds that are at different developmental stages in the pipeline to counter HIV entry, among them: (i) the attachment inhibitor dextrin-2-sulfate; (ii) the inhibitors of the glycoprotein (gp) 120/CD4 interaction PRO 542, TNX 355 and BMS 488043; (iii) the co-receptor inhibitors subdivided in those targeting CCR5 (SCH 417690 [SCH D], UK 427857 GW 873140, PRO 140, TAK 220, AMD 887) and those targeting CXCR4 (AMD 070, KRH 2731); and (iv) the fusion inhibitors enfuvirtide (T-20) and tifuvirtide (T-1249). The story of the first of these drugs, enfuvirtide, which has successfully completed phase III clinical trials, has been approved by the US FDA and by the European Medicines Agency, and is now commercially available worldwide, is an example of how the knowledge of basic molecular mechanisms can rapidly translate into the development of clinically effective molecules.
Collapse
Affiliation(s)
- Antonella Castagna
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
26
|
Lorin C, Saidi H, Belaid A, Zairi A, Baleux F, Hocini H, Bélec L, Hani K, Tangy F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 2005; 334:264-75. [PMID: 15780876 DOI: 10.1016/j.virol.2005.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/31/2004] [Accepted: 02/02/2005] [Indexed: 11/25/2022]
Abstract
Most of HIV-1 infections are acquired through sexual contact. In the absence of a preventive vaccine, the development of topical microbicides that can block infection at the mucosal tissues is needed. Dermaseptin S4 (DS4) is an antimicrobial peptide derived from amphibian skin, which displays a broad spectrum of activity against bacteria, yeast, filamentous fungi, and herpes simplex virus type 1. We show here that DS4 inhibits cell-free and cell-associated HIV-1 infection of P4-CCR5 indicator cells and human primary T lymphocytes. The peptide is effective against R5 and X4 primary isolates and laboratory-adapted strains of HIV-1. Its activity is directed against HIV-1 particles by disrupting the virion integrity. Increasing the number of DS4-positive charges reduced cytotoxicity without affecting the antiviral activity. The modified DS4 inhibited HIV-1 capture by dendritic cells and subsequent transmission to CD4(+) T cells, as well as HIV-1 binding on HEC-1 endometrial cells and transcytosis through a tight epithelial monolayer.
Collapse
Affiliation(s)
- Clarisse Lorin
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vermeire K, Princen K, Hatse S, De Clercq E, Dey K, Bell TW, Schols D. CADA, a novel CD4-targeted HIV inhibitor, is synergistic with various anti-HIV drugs in vitro. AIDS 2004; 18:2115-25. [PMID: 15577644 DOI: 10.1097/00002030-200411050-00003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the anti-HIV-1 activity of the cyclotriazadisulfonamide CADA against primary isolates in vitro and the combination of CADA with approved anti-HIV drugs for potential synergy. METHODS Peripheral blood mononuclear cells (PBMC) were treated with CADA and infected with 16 different clinical isolates. After 8 days of infection, the median inhibitory concentration (IC50) was calculated from the p24 viral antigen content in the supernatant. MT-4 cells were infected with HIV-1NL4.3 and then cultured with CADA or other antiretroviral drugs (i.e., several reverse transcriptase, protease and entry inhibitors), alone and in combination. After 4 days, IC50 was determined for the various drugs in replicate assays. Analysis of combined effects was performed using the median effect principle (CalcuSyn; Biosoft). RESULTS The entry inhibitor CADA exerted a potent and consistent anti-HIV-1 activity against a wide range of R5, R5/X4 and X4 primary isolates in PBMC. From the two-drug studies, combination indices showed synergy between CADA and reverse transcriptase inhibitors (zidovudine, stavudine, lamivudine, zalcitabine, didanosine, abacavir, tenofovir, nevirapine, delavirdine and efavirenz), and protease inhibitors (lopinavir, saquinavir, indinavir, nelfinavir, amprenavir and ritonavir). In addition, the combination of CADA with the gp41 fusion inhibitor T-20 (enfuvirtide), the CXCR4 antagonist AMD3100 and the gp120-specific interacting plant lectins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA) also resulted in a synergistic inhibition. CONCLUSIONS Compounds that can specifically downmodulate the CD4 receptor in PBMC have broad-spectrum anti-HIV activity against primary isolates and act synergistically when used in conjunction with currently available antiretroviral drugs. They deserve further study as potential candidate anti-HIV drugs.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Crowe SM, Asjo B. Locking the door to HIV entry: how far can we go? AIDS 2004; 18:2197-8. [PMID: 15577654 DOI: 10.1097/00002030-200411050-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Marks K, Gulick RM. New Antiretroviral Agents for the Treatment of HIV Infection. Curr Infect Dis Rep 2004; 6:333-339. [PMID: 15265463 DOI: 10.1007/s11908-004-0056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Issues, such as complexity, tolerability, and drug resistance and cross-resistance, limit the effectiveness of current antiretroviral regimens and make the continued development of newer agents important, despite the availability of 20 approved drugs for the treatment of HIV infection. Many new compounds are in development in existing classes: nucleoside and nucleotide analogue reverse transcriptase inhibitors (eg, D-d4FC and SPD754), non-nucleoside analogue reverse transcriptase inhibitors (eg, capravirine and TMC125), and protease inhibitors (eg, tipranavir and TMC114). In addition, newer classes of antiretroviral drugs, such as HIV entry inhibitors (eg, TNX-355, SCH 417690, UK-427,857, AMD 11070), that target the first step in the HIV life cycle are under development. Continued improvement in the treatment of HIV infection will result from the availability of convenient, well-tolerated, and affordable drugs with potent and durable antiretroviral activity.
Collapse
Affiliation(s)
- Kristen Marks
- Weill Medical College of Cornell University, Cornell Clinical Trials Unit, Box 566, 525 East 68th Street, New York, NY 10021, USA.
| | | |
Collapse
|
30
|
Abstract
The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.
Collapse
Affiliation(s)
- Robin J Shattock
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, London, UK.
| | | |
Collapse
|