1
|
Cho YK, Kim JE, Foley BT. Sequence Length of HIV-1 Subtype B Increases over Time: Analysis of a Cohort of Patients with Hemophilia over 30 Years. Viruses 2021; 13:v13050806. [PMID: 33946221 PMCID: PMC8145643 DOI: 10.3390/v13050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/27/2023] Open
Abstract
We aimed to investigate whether the sequence length of HIV-1 increases over time. We performed a longitudinal analysis of full-length coding region sequences (FLs) during an HIV-1 outbreak among patients with hemophilia and local controls infected with the Korean subclade B of HIV-1 (KSB). Genes were amplified by overlapping RT-PCR or nested PCR and subjected to direct sequencing. Overall, 141 FLs were sequentially determined over 30 years in 62 KSB-infected patients. Phylogenetic analysis indicated that within KSB, two FLs from plasma donors O and P comprised two clusters, together with 8 and 12 patients with hemophilia, respectively. Signature pattern analysis of the KSB of HIV-1 revealed 91 signature nucleotide residues (1.1%). In total, 48 and 43 signature nucleotides originated from clusters O and P, respectively. Six positions contained 100% specific nucleotide(s) in clusters O and P. In-depth FL analysis for over 30 years indicated that the KSB FL significantly increased over time before combination antiretroviral therapy (cART) and decreased with cART. This increase occurred due to the significant increase in env and nef genes, originating in the variable regions of both genes. The increase in sequence length of HIV-1 over time suggests an evolutionary direction.
Collapse
Affiliation(s)
- Young-Keol Cho
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: ; Tel.: +82-2-3010-4283; Fax: +82-2-3010-4259
| | - Jung-Eun Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Brian T. Foley
- HIV Databases, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA;
| |
Collapse
|
2
|
Joshi VR, Newman RM, Pack ML, Power KA, Munro JB, Okawa K, Madani N, Sodroski JG, Schmidt AG, Allen TM. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog 2020; 16:e1008577. [PMID: 32392227 PMCID: PMC7241850 DOI: 10.1371/journal.ppat.1008577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect.
Collapse
Affiliation(s)
- Vinita R. Joshi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruchi M. Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Melissa L. Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ken Okawa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Park SY, Love TMT, Reynell L, Yu C, Kang TM, Anastos K, DeHovitz J, Liu C, Kober KM, Cohen M, Mack WJ, Lee HY. The HIV Genomic Incidence Assay Meets False Recency Rate and Mean Duration of Recency Infection Performance Standards. Sci Rep 2017; 7:7480. [PMID: 28785052 PMCID: PMC5547093 DOI: 10.1038/s41598-017-07490-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 11/09/2022] Open
Abstract
HIV incidence is a primary metric for epidemic surveillance and prevention efficacy assessment. HIV incidence assay performance is evaluated via false recency rate (FRR) and mean duration of recent infection (MDRI). We conducted a meta-analysis of 438 incident and 305 chronic specimens' HIV envelope genes from a diverse global cohort. The genome similarity index (GSI) accurately characterized infection stage across diverse host and viral factors. All except one chronic specimen had GSIs below 0.67, yielding a FRR of 0.33 [0-0.98] %. We modeled the incidence assay biomarker dynamics with a logistic link function assuming individual variabilities in a Beta distribution. The GSI probability density function peaked close to 1 in early infection and 0 around two years post infection, yielding MDRI of 420 [361, 467] days. We tested the assay by newly sequencing 744 envelope genes from 59 specimens of 21 subjects who followed from HIV negative status. Both standardized residuals and Anderson-Darling tests showed that the test dataset was statistically consistent with the model biomarker dynamics. This is the first reported incidence assay meeting the optimal FRR and MDRI performance standards. Signatures of HIV gene diversification can allow precise cross-sectional surveillance with a desirable temporal range of incidence detection.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Lucy Reynell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Carl Yu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tina Manzhu Kang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Anastos
- Department of Medicine, and Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Jack DeHovitz
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Chenglong Liu
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Kord M Kober
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA, United States
| | - Mardge Cohen
- Department of Medicine, Stroger Hospital, Chicago, IL, United States
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
4
|
Colborn JM, Koita OA, Cissé O, Bagayoko MW, Guthrie EJ, Krogstad DJ. Identifying and quantifying genotypes in polyclonal infections due to single species. Emerg Infect Dis 2006; 12:475-82. [PMID: 16704787 PMCID: PMC3291430 DOI: 10.3201/eid1203.05057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The combination of real-time PCR and capillary electrophoresis permits the rapid identification and quantification of pathogen genotypes. Simultaneous infection with multiple pathogens of the same species occurs with HIV, hepatitis C, Epstein-Barr virus, dengue, tuberculosis, and malaria. However, available methods do not distinguish among or quantify pathogen genotypes in individual patients; they also cannot test for novel insertions and deletions in genetically modified organisms. The strategy reported here accomplishes these goals with real-time polymerase chain reaction (PCR) and capillary electrophoresis. Real-time PCR with allotype-specific primers defines the allotypes (strains) present and the intensity of infection (copy number). Capillary electrophoresis defines the number of genotypes within each allotype and the intensity of infection by genotype. This strategy can be used to study the epidemiology of emerging infectious diseases with simultaneous infection by multiple genotypes, as demonstrated here with malaria. It also permits testing for insertions or deletions in genetically modified organisms that may be used for bioterrorism.
Collapse
Affiliation(s)
- James M. Colborn
- Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|