1
|
Valencia-Hernández I, González-Piña R, García-Díaz G, Ramos-Languren L, Parra-Cid C, Lomelí J, Montes S, Ríos C, Bueno-Nava A. Alpha 2-adrenergic receptor activation reinstates motor deficits in rats recovering from cortical injury. Neural Regen Res 2023; 18:875-880. [DOI: 10.4103/1673-5374.353501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Liu S, Li W. Prazosin blocks apoptosis of endothelial progenitor cells through downregulating the Akt/NF-κB signaling pathway in a rat cerebral infarction model. Exp Ther Med 2020; 20:2577-2584. [PMID: 32765751 PMCID: PMC7401792 DOI: 10.3892/etm.2020.9009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) can enhance the recanalization of thrombosis during the progression of cerebral infarction. Prazosin plays a therapeutic role in expanding the peripheral vasculature and regulating infarction cardiosclerosis by inhibiting phosphoinositide signaling. However, the possible mechanisms underlying the therapeutic effects of prazosin have not been fully explored. The purpose of the present study was to analyze the anti-apoptotic effects of prazosin on EPCs in a rat cerebral infarction model. The results showed that prazosin treatment decreased apoptosis of EPCs. Prazosin treatment decreased the serum expression levels of the inflammatory factors, interleukin-1β and tumor necrosis factor-α in rats with cerebral infarctions as well as in EPCs in vitro. In addition, prazosin reduced the expression levels of Akt, NF-κB, phosphorylated (p)-Akt and p-NF-κB in EPCs and the middle cerebral artery of rats with cerebral infarction. These findings demonstrated that prazosin inhibited EPC apoptosis in the cerebral infarction rats through targeting the Akt/NF-κB signaling pathway. In conclusion, these results indicated that prazosin has a preventive effect on cerebral infarction by inhibiting EPC apoptosis and by inhibiting the inflammatory response in vitro and in vivo through regulating the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shudong Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Wenyan Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) can result from similar injuries and can result in similar symptoms, such as problems with sleep, concentration, memory, and mood. Although PTSD and persistent sequelae due to a TBI (PST) have generally been viewed as pragmatically confounded but conceptually separable entities, we examine emerging evidence emphasizing the breadth of overlap in both clinical presentation and underlying pathophysiology between PST and PTSD. RECENT FINDINGS New evidence underscores the poor specificity of symptoms to etiology and emphasizes the potential, after both physical brain injury and traumatic stress, for changes in each of the three interacting systems that coordinate the body's response to the experience or expectation of major injury-the immune, endocrine, and neuromodulatory neurotransmitter systems. A view of PTSD and PST sharing common pathophysiologic elements related to the CNS response to acute injury or threat carries important implications for research and clinical care.
Collapse
|
4
|
Garg C, Seo JH, Ramachandran J, Loh JM, Calderon F, Contreras JE. Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 2018; 15:42. [PMID: 29439712 PMCID: PMC5812039 DOI: 10.1186/s12974-018-1069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. Methods The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. Results Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. Conclusion Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma. Electronic supplementary material The online version of this article (10.1186/s12974-018-1069-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charu Garg
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Hellewell SC, Ziebell JM, Lifshitz J, Morganti-Kossmann MC. Impact Acceleration Model of Diffuse Traumatic Brain Injury. Methods Mol Biol 2016; 1462:253-266. [PMID: 27604723 DOI: 10.1007/978-1-4939-3816-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact acceleration (I/A) model of traumatic brain injury (TBI) was developed to reliably induce diffuse traumatic axonal injury in rats in the absence of skull fractures and parenchymal focal lesions. This model replicates a pathophysiology that is commonly observed in humans with diffuse axonal injury (DAI) caused by acceleration-deceleration forces. Such injuries are typical consequences of motor vehicle accidents and falls, which do not necessarily require a direct impact to the closed skull. There are several desirable characteristics of the I/A model, including the extensive axonal injury produced in the absence of a focal contusion, the suitability for secondary insult modeling, and the adaptability for mild/moderate injury through alteration of height and/or weight. Furthermore, the trauma device is inexpensive and readily manufactured in any laboratory, and the induction of injury is rapid (~45 min per animal from weighing to post-injury recovery) allowing multiple animal experiments per day. In this chapter, we describe in detail the methodology and materials required to produce the rat model of I/A in the laboratory. We also review current adaptations to the model to alter injury severity, discuss frequent complications and technical issues encountered using this model, and provide recommendations to ensure technically sound injury induction.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Canadian Military and Veterans' Clinical Rehabilitation Research Program, Faculty of Rehabilitation Medicine, University of Alberta, 3-48, Corbett Hall, Edmonton, AB, Canada, T6G 2G4.
| | - Jenna M Ziebell
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix VA Healthcare System, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - M Cristina Morganti-Kossmann
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
- Department of Epidemiology and Preventive Medicine, Monash University and Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Lemmens S, Brône B, Dooley D, Hendrix S, Geurts N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis--an unlucky triad. Med Res Rev 2014; 35:653-77. [PMID: 25546087 DOI: 10.1002/med.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
7
|
Hillary FG, Rajtmajer SM, Roman CA, Medaglia JD, Slocomb-Dluzen JE, Calhoun VD, Good DC, Wylie GR. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One 2014; 9:e104021. [PMID: 25121760 PMCID: PMC4133194 DOI: 10.1371/journal.pone.0104021] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 07/09/2014] [Indexed: 11/22/2022] Open
Abstract
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.
Collapse
Affiliation(s)
- Frank G. Hillary
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - Sarah M. Rajtmajer
- The Pennsylvania State University, Department of Mathematics, University Park, Pennsylvania, United States of America
| | - Cristina A. Roman
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - John D. Medaglia
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - Julia E. Slocomb-Dluzen
- Hershey Medical Center, Department of Neurology, Hershey, Pennsylvania, United States of America
| | - Vincent D. Calhoun
- The Mind Research Network, Albuquerque, New Mexico, United States of America
| | - David C. Good
- Hershey Medical Center, Department of Neurology, Hershey, Pennsylvania, United States of America
| | - Glenn R. Wylie
- Kessler Foundation Research Center, West Orange, New Jersey, United States of America
| |
Collapse
|
8
|
Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C. Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 2010; 69:375-88. [PMID: 21387380 DOI: 10.1002/ana.22237] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/12/2010] [Accepted: 08/20/2010] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Both animal and human data suggest that noradrenergic stimulation may enhance motor performance after brain damage. We conducted a placebo-controlled, double-blind and crossover design study to investigate the effects of noradrenergic stimulation on the cortical motor system in hemiparetic stroke patients. METHODS Stroke patients (n = 11) in the subacute or chronic stage with mild-to-moderate hand paresis received a single oral dose of 6 mg reboxetine (RBX), a selective noradrenaline reuptake inhibitor. We used functional magnetic resonance imaging and dynamic causal modeling to assess changes in neural activity and interregional effective connectivity while patients moved their paretic hand. RESULTS RBX stimulation significantly increased maximum grip power and index finger-tapping frequency of the paretic hand. Enhanced motor performance was associated with a reduction of cortical "hyperactivity" toward physiological levels as observed in healthy control subjects, especially in the ipsilesional ventral premotor cortex (vPMC) and supplementary motor area (SMA), but also in the temporoparietal junction and prefrontal cortex. Connectivity analyses revealed that in stroke patients neural coupling with SMA or vPMC was significantly reduced compared with healthy controls. This "hypoconnectivity" was partially normalized when patients received RBX, especially for the coupling of ipsilesional SMA with primary motor cortex. INTERPRETATION The data suggest that noradrenergic stimulation by RBX may help to modulate the pathologically altered motor network architecture in stroke patients, resulting in increased coupling of ipsilesional motor areas and thereby improved motor function.
Collapse
Affiliation(s)
- Ling E Wang
- Cognitive Neurology Section, Institute of Neuroscience and Medicine, Research Centre Juelich, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience 2010; 172:293-302. [PMID: 20974230 DOI: 10.1016/j.neuroscience.2010.10.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/07/2010] [Accepted: 10/16/2010] [Indexed: 11/21/2022]
Abstract
The prefrontal cortex is highly vulnerable to traumatic brain injury (TBI) and its structural and/or functional alterations as a result of TBI can give rise to persistent working memory (WM) dysfunction. Using a rodent model of TBI, we have described profound WM deficits following TBI that are associated with increases in prefrontal catecholamine (both dopamine and norepinephrine) content. In this study, we examined if enhanced norepinephrine signaling contributes to TBI-associated WM dysfunction. We demonstrate that administration of α1 adrenoceptor antagonists, but not α2A agonist, at 14 days post-injury significantly improved WM performance. mRNA analysis revealed increased levels of α1A, but not α1B or α1D, adrenoceptor in the medial prefrontal cortex (mPFC) of brain-injured rats. As α1A and 1B adrenoceptor promoters contain putative cAMP response element (CRE) sequences, we therefore examined if CRE-binding protein (CREB) actively engages these sequences in order to increase receptor gene transcription following TBI. Our results show that the phosphorylation of CREB is enhanced in the mPFC at time points during which increased α1A mRNA expression was observed. Chromatin immunoprecipitation (ChIP) assays using mPFC tissue from injured animals indicated increased phospho-CREB binding to the CRE sites of α1A, but not α1B, promoter compared to that observed in uninjured controls. To address the translatability of our findings, we tested the efficacy of the FDA-approved α1 antagonist Prazosin and observed that this drug improves WM in injured animals. Taken together, these studies suggest that enhanced CREB-mediated expression of α1 adrenoceptor contributes to TBI-associated WM dysfunction, and therapies aimed at reducing α1 signaling may be useful in the treatment of TBI-associated WM deficits in humans.
Collapse
|
10
|
Wang LE, Fink GR, Dafotakis M, Grefkes C. Noradrenergic stimulation and motor performance: Differential effects of reboxetine on movement kinematics and visuomotor abilities in healthy human subjects. Neuropsychologia 2009; 47:1302-12. [DOI: 10.1016/j.neuropsychologia.2009.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/28/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|
11
|
Plewnia C, Hoppe J, Gerloff C. No effects of enhanced central norepinephrine on finger-sequence learning and attention. Psychopharmacology (Berl) 2006; 187:260-5. [PMID: 16767410 DOI: 10.1007/s00213-006-0420-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/26/2006] [Indexed: 11/27/2022]
Abstract
RATIONALE When paired with training, substances that increase monoaminergic transmission in the brain support motor and language learning in healthy subjects and in rehabilitation after brain lesions. OBJECTIVES To test the hypotheses that enhancement of central norepinephrine by the selective norepinephrine reuptake inhibitor reboxetine (1) improves skilled motor performance, (2) promotes skilled motor learning, and (3) does not exert these effects by modulation of attention. METHODS In a double blind, placebo-controlled, crossover study in healthy, adult subjects (n=16), finger-sequence performance and learning was measured after the stimulation of the central noradrenergic system with a single dose (8 mg) of reboxetine and placebo. Effects on attention were assessed by the standardized continuous performance test "CPT-M". RESULTS No differential effects of reboxetine or placebo on finger-sequence performance, learning and parameters of attention were found. CONCLUSION Selective stimulation of the central noradrenergic system did not promote skilled motor learning or performance as assessed by finger-sequences. The plasticity-enhancing effect of reboxetine, documented in other studies, appears to be dependent on specific neurophysiological and neuropsychological characteristics of the task, and cannot be generalized to other behavioral paradigms.
Collapse
Affiliation(s)
- Christian Plewnia
- Department of Psychiatry and Psychotherapy, Eberhard-Karls University Medical School, Osianderstrasse 24, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
12
|
Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 2005; 136:971-89. [PMID: 16242846 DOI: 10.1016/j.neuroscience.2005.08.030] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/08/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2022]
Abstract
Approximately 4000 human beings experience a traumatic brain injury each day in the United States ranging in severity from mild to fatal. Improvements in initial management, surgical treatment, and neurointensive care have resulted in a better prognosis for traumatic brain injury patients but, to date, there is no available pharmaceutical treatment with proven efficacy, and prevention is the major protective strategy. Many patients are left with disabling changes in cognition, motor function, and personality. Over the past two decades, a number of experimental laboratories have attempted to develop novel and innovative ways to replicate, in animal models, the different aspects of this heterogenous clinical paradigm to better understand and treat patients after traumatic brain injury. Although several clinically-relevant but different experimental models have been developed to reproduce specific characteristics of human traumatic brain injury, its heterogeneity does not allow one single model to reproduce the entire spectrum of events that may occur. The use of these models has resulted in an increased understanding of the pathophysiology of traumatic brain injury, including changes in molecular and cellular pathways and neurobehavioral outcomes. This review provides an up-to-date and critical analysis of the existing models of traumatic brain injury with a view toward guiding and improving future research endeavors.
Collapse
Affiliation(s)
- D M Morales
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105C Hayden Hall, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 2004; 28:365-78. [PMID: 15341032 DOI: 10.1016/j.neubiorev.2004.06.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) in humans may cause extensive sensorimotor and cognitive dysfunction. As a result, many TBI researchers are beginning to assess behavioral correlates of histologically determined damage in animal models. Although this is an important step in TBI research, there is a need for standardization between laboratories. The ability to reliably test treatments across laboratories and multiple injury models will close the gap between treatment success in the lab and success in the clinic. The goal of this review is to describe and evaluate the tests employed to assess functional outcome after TBI and to overview aspects of cognitive, sensory, and motor function that may be suitable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Scott T Fujimoto
- Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105C Hayden Hall, Philadelphia, PA 19104-6316, USA
| | | | | | | | | | | |
Collapse
|
14
|
Van Landeghem FKH, Schreiber S, Unterberg AW, Von Deimling A, Stover JF. Differential Concentration-Dependent Effects of Prolonged Norepinephrine Infusion on Intraparenchymal Hemorrhage and Cortical Contusion in Brain-Injured Rats. J Neurotrauma 2003; 20:1327-37. [PMID: 14748981 DOI: 10.1089/089771503322686120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Under clinical conditions catecholamines are infused to elevate cerebral perfusion pressure and improve impaired posttraumatic cerebral microcirculation. This, however, is associated with the risk of additional hemorrhage in the acute phase following traumatic brain injury. In the present study we investigated the dose-dependent effects of prolonged norepinephrine infusion on arterial blood pressure, blood glucose, and structural damage in brain-injured rats. At 4 h following induction of a focal cortical contusion (CCI), 40 rats were randomized to receive low (0.15), medium (0.3), or high dose (1 microg/kg/min) norepinephrine. Control rats were given equal volume of NaCl. Norepinephrine and NaCl were infused intravenously via Alzet osmotic pumps for 44 h. Mean arterial blood pressure (MABP), blood gases and blood glucose were determined before, at 4, 24, 48 h after CCI in repeatedly anesthetized rats (n = 28). Systolic arterial blood pressure (SABP) was measured using the tail cuff method in awake, restrained rats (n = 12). Cortical contusion and intraparenchymal hemorrhage volume were quantified at 48 h in all rats. MABP determined in anesthetized rats was only marginally increased. SABP was significantly elevated during infusion of medium and high dose norepinephrine in awake rats, exceeding 140 mm Hg. Medium and high dose norepinephrine significantly increased cortical hemorrhage by 157% and 142%, without increasing the cortical contusion volume. Low dose norepinephrine significantly reduced the cortical contusion by 44%. Norepinephrine aggravates the underlying brain damage during the acute posttraumatic phase. Future studies are needed to determine the least deleterious norepinephrine concentration.
Collapse
Affiliation(s)
- Frank K H Van Landeghem
- Institute of Neuropathology, Charité Campus Virchow Klinikum, Humboldt-University, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND How effectively the brain can respond to injury and undergo structural repair has become one of the most exciting areas of contemporary basic and translational neuroscience research. Although there are no clinical treatments yet available to enhance repair of the damaged brain, there are a number of potential therapies being investigated. New drugs are designed to provide some degree of neuroprotection by preventing injured or vulnerable nerve cells from dying, or they are given in the hope of stimulating regenerative processes that could lead to the restoration or the formation of new connections that were lost because of the injury. MAIN OUTCOME MEASURES The developments in pharmacology are based primarily upon understanding the molecular mechanisms of drug actions at the level of the genome or with respect to cellular metabolism. Although there is a substantial interest in the pharmacology of brain repair, there seems to be less concern with the various theories of central nervous system plasticity, organization, and reorganization after an injury. CONCLUSIONS This review discusses some of the older and current ideas and theories that have been presented over the years to explain recovery of function. We then provide an overview of what is being done in the laboratory to develop new and safe drugs for the treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine and Neurology, Emory University, 1648 Pierce Drive, 261 Evans Building, Atlanta, GA 30322, USA
| | | |
Collapse
|
16
|
|
17
|
Kroppenstedt SN, Sakowitz OW, Thomale UW, Unterberg AW, Stover JF. Influence of norepinephrine and dopamine on cortical perfusion, EEG activity, extracellular glutamate, and brain edema in rats after controlled cortical impact injury. J Neurotrauma 2002; 19:1421-32. [PMID: 12490007 DOI: 10.1089/089771502320914651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Following traumatic brain injury, catecholamines given to ameliorate cerebral perfusion may induce brain damage via cerebral arteriolar constriction and increased neuronal excitation. In the present study the acute effects of norepinephrine and dopamine on pericontusional cortical perfusion (rCBF), electroencephalographic (EEG) activity, extracellular glutamate, and brain edema were investigated in rats following controlled cortical impact injury (CCI). rCBF, cerebral perfusion pressure (CPP), EEG activity, and glutamate were determined before, during, and after infusing norepinephrine or dopamine, increasing MABP to 120 mm Hg for 90 min at 4 h after CCI. Control rats received physiological saline. At 8 h after CCI, hemispheric swelling and water content were determined gravimetrically. Following CCI, rCBF was significantly decreased. In parallel to elevating MABP and CPP, rCBF was significantly increased by norepinephrine and dopamine, being mostly pronounced with norepinephrine (+44% vs. +29%). In controls, rCBF remained diminished (-45%). EEG activity was significantly increased by norepinephrine and dopamine, while pericontusional glutamate was only elevated by norepinephrine (28 +/- 6 vs. 8 +/- 4 microM). Brain edema was not increased compared to control rats. Despite significantly increasing MABP and CPP to the same extent, norepinephrine and dopamine seem to differentially influence pericontusional cortical perfusion and glutamatergic transmission. In addition to the pressure-passive increase in CPP local cerebral effects seem to account for the sustained norepinephrine-induced increase in pericontusional cortical perfusion. The significantly elevated pericontusional glutamate concentrations in conjunction with the increased EEG activity suggest a sustained metabolically driven increase in cortical perfusion during norepinephrine infusion.
Collapse
|