1
|
Zarrintaj P, Ghorbani S, Barani M, Singh Chauhan NP, Khodadadi Yazdi M, Saeb MR, Ramsey JD, Hamblin MR, Mozafari M, Mostafavi E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng Transl Med 2022; 7:e10261. [PMID: 35111953 PMCID: PMC8780928 DOI: 10.1002/btm2.10261] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
There have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can be used as tissue engineering scaffolds for skin regeneration, and as drug carriers or even gene delivery vectors for the treatment of skin diseases. In addition, polylysine can play a preservative role in extending the lifetime of skin tissue by minimizing the appearance of photodamaged skin. Research on polylysine is growing today, opening new scenarios that expand the potential of these biomaterials from traditional treatments to a new era of tissue regeneration. This review aims to address the basic concepts, recent trends, and prospects of polylysine-based biomaterials for skin regeneration. Undoubtedly, this class of biomaterials needs further evaluations and explorations, and many critical questions have yet to be answered.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | | | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health ScienceUniversity of JohannesburgSouth Africa
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoTorontoONCanada.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
2
|
Zhang Z, Slobodianski A, Arnold A, Nehlsen J, Hopfner U, Schilling AF, Perisic T, Machens HG. High Efficiency Low Cost Fibroblast Nucleofection for GMP Compatible Cell-based Gene Therapy. Int J Med Sci 2017; 14:798-803. [PMID: 28824316 PMCID: PMC5562186 DOI: 10.7150/ijms.19241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 11/21/2022] Open
Abstract
Background: Dermal fibroblast is a powerful tool for the study of ex vivo DNA delivery in development of both cell therapy and tissue engineering products. Using genetic modification, fibroblasts can be diversely adapted and made suitable for clinical gene therapy. In this study, we first compared several non-viral transfection methods including nucleofection in rat and human primary dermal fibroblast. In addition, the original protocol for nucleofection of primary mammalian fibroblasts was modified in order to achieve the highest possible transfection efficiency, as determined by flow cytometry analysis of the green fluorescent protein (GFP) expression. Results: the results showed that transfection performance of Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Calf Serum (FCS) yielded the best transfection efficiency with rat dermal fibroblasts and ITS (insulin, transferrin, and sodium selenite solution) was comparable to the standard nucleofection solution for human dermal fibroblasts. Conclusion: Our results suggest a promising application of the modified nucleofection method for GMP compatible therapeutic translational medical research.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Alex Slobodianski
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Technical University Munich, Faculty of Medicine, TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany.,Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Astrid Arnold
- Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Jessica Nehlsen
- Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Ursula Hopfner
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| | - Arndt F Schilling
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tatjana Perisic
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| |
Collapse
|
3
|
Perdoni C, Osborn MJ, Tolar J. Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa. Transl Res 2016; 168:50-58. [PMID: 26073463 PMCID: PMC4662628 DOI: 10.1016/j.trsl.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by mutations in the COL7A1 gene that result in absent or dysfunctional type VII collagen protein production. Clinically, RDEB manifests as early and severe chronic cutaneous blistering, damage to internal epithelium, an increased risk for squamous cell carcinoma, and an overall reduced life expectancy. Recent localized and systemic treatments have shown promise for lessening the disease severity in RDEB, but the concept of ex vivo therapy would allow a patient's own cells to be engineered to express functional type VII collagen. Here, we review gene delivery and editing platforms and their application toward the development of next-generation treatments designed to correct the causative genetic defects of RDEB.
Collapse
Affiliation(s)
- Christopher Perdoni
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Mark J Osborn
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
4
|
El-Darouti M, Fawzy M, Amin I, Abdel Hay R, Hegazy R, Gabr H, El Maadawi Z. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: a randomized controlled trial. Dermatol Ther 2015; 29:96-100. [DOI: 10.1111/dth.12305] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad El-Darouti
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Marwa Fawzy
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Iman Amin
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Rania Abdel Hay
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Rehab Hegazy
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Hala Gabr
- Department of Clinical Pathology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Zeinab El Maadawi
- Department of Histology, Faculty of Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
5
|
Gache Y, Pin D, Gagnoux-Palacios L, Carozzo C, Meneguzzi G. Correction of dog dystrophic epidermolysis bullosa by transplantation of genetically modified epidermal autografts. J Invest Dermatol 2011; 131:2069-78. [PMID: 21697889 DOI: 10.1038/jid.2011.172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin blistering condition caused by mutations in the gene coding for collagen type VII. Genetically engineered RDEB dog keratinocytes were used to generate autologous epidermal sheets subsequently grafted on two RDEB dogs carrying a homozygous missense mutation in the col7a1 gene and expressing baseline amounts of the aberrant protein. Transplanted cells regenerated a differentiated and vascularized auto-renewing epidermis progressively repopulated by dendritic cells and melanocytes. No adverse immune reaction was detected in either dog. In dog 1, the grafted epidermis firmly adhered to the dermis throughout the 24-month follow-up, which correlated with efficient transduction (100%) of highly clonogenic epithelial cells and sustained transgene expression. In dog 2, less efficient (65%) transduction of primary keratinocytes resulted in a loss of the transplanted epidermis and graft blistering 5 months after transplantation. These data provide the proof of principle for ex vivo gene therapy of RDEB patients with missense mutations in collagen type VII by engraftment of the reconstructed epidermis, and demonstrate that highly efficient transduction of epidermal stem cells is crucial for successful gene therapy of inherited skin diseases in which correction of the genetic defect confers no major selective advantage in cell culture.
Collapse
|
6
|
SHI Y, LIU XH, LIANG DS, FENG M, WU LQ, YANG JL, LI Z, ZHAO K, PAN Q, LONG ZG, XIA JH. The Transfection Efficiency Improvement of hrDNA Targeting Vectors With NLS Peptide*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Andreadis ST. Gene-modified tissue-engineered skin: the next generation of skin substitutes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:241-74. [PMID: 17195466 DOI: 10.1007/10_023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tissue engineering combines the principles of cell biology, engineering and materials science to develop three-dimensional tissues to replace or restore tissue function. Tissue engineered skin is one of most advanced tissue constructs, yet it lacks several important functions including those provided by hair follicles, sebaceous glands, sweat glands and dendritic cells. Although the complexity of skin may be difficult to recapitulate entirely, new or improved functions can be provided by genetic modification of the cells that make up the tissues. Gene therapy can also be used in wound healing to promote tissue regeneration or prevent healing abnormalities such as formation of scars and keloids. Finally, gene-enhanced skin substitutes have great potential as cell-based devices to deliver therapeutics locally or systemically. Although significant progress has been made in the development of gene transfer technologies, several challenges have to be met before clinical application of genetically modified skin tissue. Engineering challenges include methods for improved efficiency and targeted gene delivery; efficient gene transfer to the stem cells that constantly regenerate the dynamic epidermal tissue; and development of novel biomaterials for controlled gene delivery. In addition, advances in regulatable vectors to achieve spatially and temporally controlled gene expression by physiological or exogenous signals may facilitate pharmacological administration of therapeutics through genetically engineered skin. Gene modified skin substitutes are also employed as biological models to understand tissue development or disease progression in a realistic three-dimensional context. In summary, gene therapy has the potential to generate the next generation of skin substitutes with enhanced capacity for treatment of burns, chronic wounds and even systemic diseases.
Collapse
Affiliation(s)
- Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical & Biological Engineering, University at Buffalo, The State University of New York (SUNY), Amherst, NY 14260, USA.
| |
Collapse
|
8
|
Goto M, Sawamura D, Ito K, Abe M, Nishie W, Sakai K, Shibaki A, Akiyama M, Shimizu H. Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol 2006; 126:766-72. [PMID: 16439972 DOI: 10.1038/sj.jid.5700117] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dystrophic epidermolysis bullosa (DEB) is an inherited blistering skin disorder caused by mutations in the type VII collagen gene (COL7A1). Therapeutic introduction of COL7A1 into skin cells holds significant promise for the treatment of DEB. The purpose of this study was to establish an efficient retroviral transfer method for COL7A1 into DEB epidermal keratinocytes and dermal fibroblasts, and to determine which gene-transferred cells can most efficiently express collagen VII in the skin. We demonstrated that gene transfer using a combination of G protein of vesicular stomatitis virus-pseudotyped retroviral vector and retronectin introduced COL7A1 into keratinocytes and fibroblasts from a DEB patient with the lack of COL7A1 expression. Real-time polymerase chain reaction analysis of the normal human skin demonstrated that the quantity of COL7A1 expression in the epidermis was significantly higher than that in the dermis. Subsequently, we have produced skin grafts with the gene-transferred or untreated DEB keratinocytes and fibroblasts, and have transplanted them into nude rats. Interestingly, the series of skin graft experiments showed that the gene-transferred fibroblasts supplied higher amount of collagen VII to the new dermal-epidermal junction than the gene-transferred keratinocytes. An ultrastructural study revealed that collagen VII from gene-transferred cells formed proper anchoring fibrils. These results suggest that fibroblasts may be a better gene therapy target of DEB treatment than keratinocytes.
Collapse
Affiliation(s)
- Maki Goto
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The capacity to induce neoplasia in human tissue in the laboratory has recently provided a new platform for cancer research. Malignant conversion can be achieved in vivo by expressing genes of interest in human tissue that has been regenerated on immune-deficient mice. Induction of cancer in regenerated human skin recapitulates the three-dimensional architecture, tissue polarity, basement membrane structure, extracellular matrix, oncogene signalling and therapeutic target proteins found in intact human skin in vivo. Human-tissue cancer models therefore provide an opportunity to elucidate fundamental cancer mechanisms, to assess the oncogenic potency of mutations associated with specific human cancers and to develop new cancer therapies.
Collapse
Affiliation(s)
- Paul A Khavari
- Veterans Affairs, Palo Alto Healthcare System, Palo Alto, California 94304, USA.
| |
Collapse
|
10
|
Abstract
Dystrophic epidermolysis bullosa (DEB) is due to mutations in the type VII collagen (C7) gene. Potential therapies for DEB include (i) ex vivo gene therapy and (ii) intradermal injection of gene-corrected DEB fibroblasts, lentiviral vectors expressing C7 or recombinant C7 itself. With regard to molecular engineering, the dermal fibroblast has advantages over epidermal keratinocytes for delivering C7 to DEB patients.
Collapse
Affiliation(s)
- Mei Chen
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
11
|
Abstract
The skin is an attractive target for gene therapy because it is easily accessible and shows great potential as an ectopic site for protein delivery in vivo. Genetically modified epidermal cells can be used to engineer three-dimensional skin substitutes, which when transplanted can act as in vivo 'bioreactors' for delivery of therapeutic proteins locally or systemically. Although some gene transfer technologies have the potential to afford permanent genetic modification, differentiation and eventual loss of genetically modified cells from the epidermis results in temporary transgene expression. Therefore, to achieve stable long-term gene expression, it is critical to deliver genes to epidermal stem cells, which possess unlimited growth potential and self-renewal capacity. This review discusses the recent advances in epidermal stem cell isolation, gene transfer and engineering of skin substitutes. Recent efforts that employ gene therapy and tissue engineering for the treatment of genetic diseases, chronic wounds and systemic disorders, such as leptin deficiency or diabetes, are reviewed. Finally, the use of gene-modified tissue-engineered skin as a biological model for understanding tissue development, wound healing and epithelial carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Stelios T Andreadis
- University at Buffalo, Bioengineering Laboratory, Department of Chemical and Biological Engineering, State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
12
|
Woodley DT, Krueger GG, Jorgensen CM, Fairley JA, Atha T, Huang Y, Chan L, Keene DR, Chen M. Normal and Gene-Corrected Dystrophic Epidermolysis Bullosa Fibroblasts Alone Can Produce Type VII Collagen at the Basement Membrane Zone. J Invest Dermatol 2003; 121:1021-8. [PMID: 14708601 DOI: 10.1046/j.1523-1747.2003.12571.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type VII collagen is synthesized and secreted by both human keratinocytes and fibroblasts. Although both cell types can secrete type VII collagen, it is thought that keratinocytes account for type VII collagen at the dermal-epidermal junction (DEJ). In this study, we examined if type VII collagen secreted solely by dermal fibroblasts could be transported to the DEJ. We established organotypic, skin-equivalent cultures composed of keratinocytes from patients with recessive dystrophic epidermolysis bullosa (RDEB) and normal dermal fibroblasts. Immuno-labeling of skin equivalent sections with the anti-type VII collagen antibody revealed tight linear staining at the DEJ. RDEB fibroblasts, were gene-corrected to make type VII collagen and used to regenerate human skin on immune-deficient mice. The human skin generated by gene-corrected RDEB fibroblasts or normal human fibroblasts combined with RDEB keratinocytes restored type VII collagen expression at the DEJ in vivo. Further, intradermal injection of normal human or gene-corrected RDEB fibroblasts into mouse skin resulted in the stable expression of human type VII collagen at the mouse DEJ. These data demonstrate that human dermal fibroblasts alone are capable of producing type VII collagen at the DEJ, and it is possible to restore type VII collagen gene expression in RDEB skin in vivo by direct intradermal injection of fibroblasts.
Collapse
Affiliation(s)
- David T Woodley
- Department of Medicine, Division of Dermatology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest 2003; 111:251-5. [PMID: 12531881 PMCID: PMC151880 DOI: 10.1172/jci17193] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic strategies for genetic skin disorders rely on the complex process of grafting genetically engineered tissue to recipient wound beds. Because fibroblasts synthesize and secrete extracellular matrix, we explored their utility in recessive dystrophic epidermolysis bullosa (RDEB), a blistering disease due to defective extracellular type VII collagen. Intradermal injection of RDEB fibroblasts overexpressing type VII collagen into intact RDEB skin stably restored correctly localized type VII collagen expression in vivo and normalized hallmark RDEB disease features, including subepidermal blistering and anchoring fibril defects. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.
Collapse
Affiliation(s)
- Susana Ortiz-Urda
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest 2003. [DOI: 10.1172/jci200317193] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Christensen R, Güttler F, Jensen TG. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria. Mol Genet Metab 2002; 76:313-8. [PMID: 12208136 DOI: 10.1016/s1096-7192(02)00101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase (PAH) and increased levels of phenylalanine. PAH requires the cofactor BH(4) to function and the rate-limiting step in the synthesis of BH(4) is GTP cyclohydrolase I (GTP-CH). The skin is a potential target tissue for PKU gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin, to metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed a higher copy number of transgenes in keratinocytes and also a higher metabolic capacity.
Collapse
|
16
|
Abstract
Recent progress in molecular genetics has illuminated the basis for a wide variety of inherited and acquired diseases. Gene therapy offers an attractive therapeutic approach capitalizing upon these new mechanistic insights. The skin is a uniquely attractive tissue site for development of new genetic therapeutic approaches both for its accessibility as well as for the large number of diseases that are amenable in principle to cutaneous gene transfer. Amongst these opportunities are primary monogenic skin diseases, chronic wounds and systemic disorders characterized by low or absent levels of circulating polypeptides. For cutaneous gene therapy to be effective, however, significant progress is required in a number of domains. Recent advances in vector design, administration, immune modulation, and regulation of gene expression have brought the field much nearer to clinical utility.
Collapse
Affiliation(s)
- P A Khavari
- VA Palo Alto Healthcare System and the Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | |
Collapse
|