1
|
Søgaard PP, Lind M, Christiansen CR, Petersson K, Clauss A, Caffarel-Salvador E. Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics 2021; 13:1722. [PMID: 34684016 PMCID: PMC8537019 DOI: 10.3390/pharmaceutics13101722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapies have conspicuously bloomed in recent years as evidenced by the increasing number of cell-, gene-, and oligo-based approved therapies. These therapies hold great promise for dermatological disorders with high unmet need, for example, epidermolysis bullosa or pachyonychia congenita. Furthermore, the recent clinical success of clustered regularly interspaced short palindromic repeats (CRISPR) for genome editing in humans will undoubtedly contribute to defining a new wave of therapies. Like biologics, naked nucleic acids are denatured inside the gastrointestinal tract and need to be administered via injections. For a treatment to be effective, a sufficient amount of a given regimen needs to reach systemic circulation. Multiple companies are racing to develop novel oral drug delivery approaches to circumvent the proteolytic and acidic milieu of the gastrointestinal tract. In this review, we provide an overview of the evolution of the gene therapy landscape, with a deep focus on gene and oligonucleotide therapies in clinical trials aimed at treating skin diseases. We then examine the progress made in drug delivery, with particular attention on the peptide field and drug-device combinations that deliver macromolecules into the gastrointestinal tract. Such novel devices could potentially be applied to administer other therapeutics including genes and CRISPR-based systems.
Collapse
Affiliation(s)
- Pia Pernille Søgaard
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Marianne Lind
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | | | - Karsten Petersson
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | - Adam Clauss
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Ester Caffarel-Salvador
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
- LEO Science & Tech Hub, One Broadway, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20:911-923. [PMID: 32178539 PMCID: PMC7392816 DOI: 10.1080/14712598.2020.1740678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Junctional epidermolysis bullosa (JEB) is a rare inherited genetic disorder with limited treatments beyond palliative care. A major hallmark of JEB is skin blistering caused by functional loss or complete absence of major structural proteins of the skin. Impaired wound healing in patients with JEB gives rise to chronic cutaneous ulcers that require daily care. Wound care and infection control are the current standard of care for this patient population. AREAS COVERED This review covers research and clinical implementation of emerging drug, cell, and gene therapies for JEB. Current clinical trials use topical drug delivery to manipulate the inflammation and re-epithelialization phases of wound healing or promote premature stop codon readthrough to accelerate chronic wound closure. Allogeneic cell therapies for JEB have been largely unsuccessful, with autologous skin grafting emerging as a reliable method of resolving the cutaneous manifestations of JEB. Genetic correction and transplant of autologous keratinocytes have demonstrated persistent amelioration of chronic wounds in a subset of patients. EXPERT OPINION Emerging therapies address the cutaneous symptoms of JEB but are unable to attend to systemic manifestations of the disease. Investigations into the molecular mechanism(s) underpinning the failure of systemic allogeneic cell therapies are necessary to expand the range of effective JEB therapies.
Collapse
Affiliation(s)
- Allison R. Keith
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirk Twaroski
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christen L. Ebens
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Marinkovich MP, Tang JY. Gene Therapy for Epidermolysis Bullosa. J Invest Dermatol 2019; 139:1221-1226. [PMID: 31068252 DOI: 10.1016/j.jid.2018.11.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is a family of diseases characterized by blistering and fragility of the skin in response to mechanical trauma. Advances in our understanding of epidermolysis bullosa pathophysiology have provided the necessary foundation for the first clinical trials of gene therapy for junctional and dystrophic epidermolysis bullosa. These therapies show that gene therapy is both safe and effective, with the potential to correct the molecular and clinical phenotype of patients with epidermolysis bullosa. Improvements in gene delivery and in preventing immune reactions will be among the challenges that lie ahead during further therapeutic development.
Collapse
Affiliation(s)
- M Peter Marinkovich
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA; Department of Dermatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, California, USA.
| | - Jean Y Tang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Kubanov AA, Albanova VI, Chikin VV, Yepishev RV. Modern methods of the treatment of hereditary epidermolysis bullosa. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-6-47-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Today there are no ethiopathogenetic treatment methods for treating hereditary epidermolysis bullosa. All available treatment methods are symptomatic and are mainly aimed at patient care. Since severe forms of hereditary epidermolysis bullosa affect multiple organs, patients need assistance of both dermatologists and skilled experts such as general practitioners (pediatricians), gastroenterologists and dentists or ophthalmologists, surgeons, hematologists, oncologists, etc. when needed. To take efficient therapeutic and preventive measures, clinical recommendations and treatment standards are needed. Promising therapeutic methods (protein replacement, cell and gene techniques) are currently at different development and implementation stages but they can solve problems related to the treatment of hereditary epidermolysis bullosa in the future.
Collapse
|
5
|
Szlavicz E, Szabo K, Bata-Csorgo Z, Kemeny L, Szell M. What have we learned about non-involved psoriatic skin from large-scale gene expression studies? World J Dermatol 2014; 3:50-57. [DOI: 10.5314/wjd.v3.i3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/10/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder; its genetic background has been widely studied in recent decades. Recognition of novel factors contributing to the pathogenesis of this disorder was facilitated by potent molecular biology tools developed during the 1990s. Large-scale gene expression studies, including differential display and microarray, have been used in experimental dermatology to a great extent; moreover, skin was one of the first organs analyzed using these methods. We performed our first comprehensive gene expression analysis in 2000. With the help of differential display and microarray, we have discovered several novel factors contributing to the inherited susceptibility for psoriasis, including the EDA+ fibronectin splice variant and PRINS. The long non-coding PRINS RNA is expressed at higher levels in non-involved skin compared to healthy and involved psoriatic epidermis and might be a factor contributing cellular stress responses and, specifically, to the development of psoriatic symptoms. This review summarizes the most important results of our large-scale gene expression studies.
Collapse
|
6
|
Blumenberg M. Skinomics: past, present and future for diagnostic microarray studies in dermatology. Expert Rev Mol Diagn 2014; 13:885-94. [PMID: 24151852 DOI: 10.1586/14737159.2013.846827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Easily accessible, skin was among the first targets analyzed using 'omics' and dermatology embraced the approaches very early. Microarrays have been used to define disease markers, identify transcriptional changes and even trace the course of treatment. Melanoma and psoriasis have been explored using microarrays. Particularly noteworthy is the multinational mapping of psoriasis susceptibility loci. The transcriptional changes in psoriasis have been identified using hundreds of biopsies. Epidermal keratinocytes have been studied because they respond to UV light, infections, inflammatory and immunomodulating cytokines, toxins and so on. Epidermal differentiation genes are being characterized and are expressed in human epidermal stem cells. Exciting discoveries defining human skin microbiomes have opened a new field of research with great medical potential. Specific to dermatology, the non-invasive skin sampling for microarray studies, using tape stripping, has been developed; it promises to advance dermatology toward 'omics' techniques directly applicable to the personalized medicine of the future.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, the NYU Cancer Institute, NYU Langone Medical Center, NYU School of Medicine, 455 First Avenue, P.H.B. Room 874, New York NY 10016, USA
| |
Collapse
|
7
|
Blumenberg M. SKINOMICS: Transcriptional Profiling in Dermatology and Skin Biology. Curr Genomics 2012; 13:363-8. [PMID: 23372422 PMCID: PMC3401893 DOI: 10.2174/138920212801619241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 01/08/2023] Open
Abstract
Recent years witnessed the birth of bioinformatics technologies, which greatly advanced biological research. These 'omics' technologies address comprehensively the entire genome, transcriptome, proteome, microbiome etc. A large impetus in development of bioinformatics was the introduction of DNA microarrays for transcriptional profiling. Because of its accessibility, skin was among the first organs analyzed using DNA microarrays, and dermatology among the first medical disciplines to embrace the approach. Here, DNA microarray methodologies and their application in dermatology and skin biology are reviewed. The most studied disease has been, unsurprisingly, melanoma; markers of melanoma progression, metastatic potential and even melanoma markers in blood have been detected. The basal and squamous cell carcinomas have also been intensely studied. Psoriasis has been comprehensively explored using DNA microarrays, transcriptional changes correlated with genomic markers and several signaling pathways important in psoriasis have been identified. Atopic dermatitis, wound healing, keloids etc. have been analyzed using microarrays. Noninvasive skin sampling for microarray studies has been developed. Simultaneously, epidermal keratinocytes have been the subject of many skin biology studies because they respond to a rich variety of inflammatory and immunomodulating cytokines, hormones, vitamins, UV light, toxins and physical injury. The transcriptional changes occurring during epidermal differentiation and cornification have been identified and characterized. Recent studies identified the genes specifically expressed in human epidermal stem cells. As dermatology advances toward personalized medicine, microarrays and related 'omics' techniques will be directly applicable to the personalized dermatology practice of the future.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The Departments of Dermatology, Biochemistry and Molecular Pharmacology, and the NYU Cancer Institute, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Chen Y, Liang G. Enzymatic self-assembly of nanostructures for theranostics. Am J Cancer Res 2012; 2:139-47. [PMID: 22375155 PMCID: PMC3287425 DOI: 10.7150/thno.3696] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/10/2011] [Indexed: 12/15/2022] Open
Abstract
Self-assembly of small molecules or macromolecules through non-covalent or covalent bonds to build up supramolecular nanostructures is a prevalent and important process in nature. While most chemists use small molecules to assemble nanostructures with physical or chemical perturbations, nature adopts enzymes to catalyze the reaction to assemble biological, functional nanostructures with high efficiency and specificity. Although enzymatic self-assembly of nanostructures has been remained challenging for chemists, there are still a few examples of using important enzymes to initiate the self-assembly of nanostructures for diagnosis or therapy of certain diseases because down-regulation or overexpression of certain enzymes always associates with abnormalities of tissues/organs or diseases in living body. Herein, we introduce the concept of enzymatic self-assembly and illustrate the design and application of enzyme-catalyzed or -regulated formation of nanostructures for theranostics.
Collapse
|
9
|
The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 2011; 32:5304-10. [DOI: 10.1016/j.biomaterials.2011.03.078] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 01/14/2023]
|
10
|
Fujita Y, Abe R, Inokuma D, Sasaki M, Hoshina D, Natsuga K, Nishie W, McMillan JR, Nakamura H, Shimizu T, Akiyama M, Sawamura D, Shimizu H. Bone marrow transplantation restores epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice. Proc Natl Acad Sci U S A 2010; 107:14345-50. [PMID: 20660747 PMCID: PMC2922560 DOI: 10.1073/pnas.1000044107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Attempts to treat congenital protein deficiencies using bone marrow-derived cells have been reported. These efforts have been based on the concepts of stem cell plasticity. However, it is considered more difficult to restore structural proteins than to restore secretory enzymes. This study aims to clarify whether bone marrow transplantation (BMT) treatment can rescue epidermolysis bullosa (EB) caused by defects in keratinocyte structural proteins. BMT treatment of adult collagen XVII (Col17) knockout mice induced donor-derived keratinocytes and Col17 expression associated with the recovery of hemidesmosomal structure and better skin manifestations, as well improving the survival rate. Both hematopoietic and mesenchymal stem cells have the potential to produce Col17 in the BMT treatment model. Furthermore, human cord blood CD34(+) cells also differentiated into keratinocytes and expressed human skin component proteins in transplanted immunocompromised (NOD/SCID/gamma(c)(null)) mice. The current conventional BMT techniques have significant potential as a systemic therapeutic approach for the treatment of human EB.
Collapse
Affiliation(s)
- Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Riichiro Abe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daisuke Inokuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Mikako Sasaki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daichi Hoshina
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - James R. McMillan
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan; and
| | - Masashi Akiyama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
11
|
Igoucheva O, Kelly A, Uitto J, Alexeev V. Protein therapeutics for junctional epidermolysis bullosa: incorporation of recombinant beta3 chain into laminin 332 in beta3-/- keratinocytes in vitro. J Invest Dermatol 2007; 128:1476-86. [PMID: 18079746 DOI: 10.1038/sj.jid.5701197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Junctional epidermolysis bullosa (JEB) is an inherited mechanobullous disease characterized by reduced adherence of the epidermal keratinocytes to the underlying dermis, and is often caused by the absence of functional laminin 332 due to the lack or dysfunction of its beta3 chain. As there are no specific therapies for JEB, we tested whether a protein replacement strategy could be applicable for the restoration of the laminin 332 assembly and reversion of the JEB phenotype in human keratinocytes that lack beta3 subunit. Here, we developed the protocol for production and purification of the biologically active recombinant beta3 chain. Next, we demonstrated that delivery of recombinant beta3 polypeptide into the endoplasmic reticulum of the immortalized beta3-null keratinocytes led to the restoration of the laminin 332 assembly, secretion, and deposition into the basement membrane zone, as confirmed by Western blot analysis, confocal immunofluorescent microscopy in vitro, and on cultured organotypic human JEB skin reconstructs. Although the amount of laminin 332 produced by protein-treated beta3-null keratinocytes is lower than that in normal human keratinocytes, our results demonstrate the applicability of the recombinant proteins for JEB treatment and open new perspectives for the development of novel therapeutics for this inherited, currently intractable, skin disorder.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
12
|
Blumenberg M. DNA microarrays in dermatology and skin biology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:243-60. [PMID: 17069506 DOI: 10.1089/omi.2006.10.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because of its accessibility, skin has been among the first organs analyzed using DNA microarrays. Skin cancers, melanomas, and basal and squamous cell carcinomas have been intensely investigated because they are very frequent and can be fatal. Psoriasis, one of the most common human inflammatory diseases, has been studied comprehensively using DNA microarrays. In addition, epidermal keratinocytes have been the target of many studies because they respond to a rich variety of inflammatory and immunomodulating cytokines, hormones, vitamins, ultraviolet (UV) light, toxins, and physical injury. Because of the ethical considerations, the effects of harmful or dangerous agents on skin have been studied using artificial skin substitutes. Transcriptional mechanisms that regulate epidermal differentiation and cornification have begun to yield their mysteries, and very exciting recent studies identified the genes specifically expressed in epidermal stem cells. Thus, skin has everything: stem cells, differentiation, signaling, inflammation, diseases, and cancer. All these exciting facets of skin have been explored using DNA microarrays. Researchers in skin biology and dermatology were among the first to implement this technology and we expect that they will continue to generate exciting and useful new knowledge.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, Cancer Institute, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
13
|
Ortiz-Urda S, Lin Q, Yant SR, Keene D, Kay MA, Khavari PA. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther 2003; 10:1099-104. [PMID: 12808440 DOI: 10.1038/sj.gt.3301978] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 12/06/2002] [Indexed: 01/13/2023]
Abstract
Sustainable correction of severe human genetic disorders of self-renewing tissues, such as the blistering skin disease junctional epidermolysis bullosa (JEB), is facilitated by stable genomic integration of therapeutic genes into somatic tissue stem cells. While integrating viral vectors can achieve this, they suffer from logistical and biosafety concerns. To circumvent these limitations, we used the Sleeping Beauty transposable element to integrate the LAMB3 cDNA into genomes of epidermal holoclones from six unrelated JEB patients. These cells regenerate human JEB skin that is normalized at the level of laminin 5 protein expression, hemidesmosome formation and blistering. Transposon-mediated gene delivery therefore affords an opportunity for stable gene delivery in JEB and other human diseases.
Collapse
Affiliation(s)
- S Ortiz-Urda
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|