1
|
Manohar SK, Gowrav MP, Gangadharappa HV. Materials for Gene Delivery Systems. INTERACTION OF NANOMATERIALS WITH LIVING CELLS 2023:411-437. [DOI: 10.1007/978-981-99-2119-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Sarwar S, Abdul Qadir M, Alharthy RD, Ahmed M, Ahmad S, Vanmeert M, Mirza MU, Hameed A. Folate Conjugated Polyethylene Glycol Probe for Tumor-Targeted Drug Delivery of 5-Fluorouracil. Molecules 2022; 27:1780. [PMID: 35335144 PMCID: PMC8954791 DOI: 10.3390/molecules27061780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023] Open
Abstract
A targeted delivery system is primarily intended to carry a potent anticancer drug to specific tumor sites within the bodily tissues. In the present study, a carrier system has been designed using folic acid (FA), bis-amine polyethylene glycol (PEG), and an anticancer drug, 5-fluorouracil (5-FU). FA and PEG were joined via an amide bond, and the resulting FA-PEG-NH2 was coupled to 5-FU producing folate-polyethylene glycol conjugated 5-fluorouracil (FA-PEG-5-FU). Spectroscopic techniques (UV-Vis, 1HNMR, FTIR, and HPLC) were used for the characterization of products. Prodrug (FA-PEG-5-FU) was analyzed for drug release profile (in vitro) up to 10 days and compared to a standard anticancer drug (5-FU). Folate conjugate was also analyzed to study its folate receptors (FR) mediated transport and in vitro cytotoxicity assays using HeLa cancer cells/Vero cells, respectively, and antitumor activity in tumor-bearing mice models. Folate conjugate showed steady drug release patterns and improved uptake in the HeLa cancer cells than Vero cells. Folate conjugate treated mice group showed smaller tumor volumes; specifically after the 15th day post-treatment, tumor sizes were decreased significantly compared to the standard drug group (5-FU). Molecular docking findings demonstrated importance of Trp138, Trp140, and Lys136 in the stabilization of flexible loop flanking the active site. The folic acid conjugated probe has shown the potential of targeted drug delivery and sustained release of anticancer drug to tumor lesions with intact antitumor efficacy.
Collapse
Affiliation(s)
- Shabnam Sarwar
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (M.A.Q.); (S.A.)
| | - Muhammad Abdul Qadir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (M.A.Q.); (S.A.)
| | - Rima D. Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore 54770, Pakistan
| | - Saghir Ahmad
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (M.A.Q.); (S.A.)
| | - Michiel Vanmeert
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (M.V.); (M.U.M.)
| | - Muhammad Usman Mirza
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (M.V.); (M.U.M.)
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| |
Collapse
|
3
|
Pothukuchi RP, Singh U, Bhatia DD, Radhakrishna M. Controlled 3D assembly and stimuli responsive behavior of DNA and peptide functionalized gold nanoparticles in solutions. Phys Chem Chem Phys 2022; 24:19552-19563. [DOI: 10.1039/d2cp02548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA mediated directed self assembly of gold nanoparticles (AuNPs) has garnered immense interest due to its ability to precisely control supramolecular assemblies. Most experimental works have relied on utilizing the...
Collapse
|
4
|
Abd-Rabou AA, Bharali DJ, Mousa SA. Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Appl Biochem Biotechnol 2019; 190:305-324. [PMID: 31346920 DOI: 10.1007/s12010-019-03090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Current estimates indicate that hepatocarcinoma is the leading cause of death globally. There is interest in utilizing nanomedicine for cancer therapy to overcome side effects of chemo-interventions. Ribavirin, an antiviral nucleoside inhibitor, accumulates inside red blood cells, causing anemia. Its analog, viramidine, can concentrate within hepatocytes and spare red blood cells, thus limiting anemia. Hepatocarcinoma cells have a large number of asialoglycoprotein receptors on their membranes that can bind galactosyl-terminating solid lipid nanoparticles (Gal-SLN) and internalize them. Here, viramidine, 5-fluorouracil, and paclitaxel-loaded Gal-SLN were characterized inside cells. Cytotoxicities of free-drug, nano-void, and drug-loaded Gal-SLN were evaluated using HepG2 cells; over 3 days, cell viability was measured. To test the mechanistic pathway, we investigated in vitro apoptosis using flow cytometry and in ovo angiogenesis using the CAM assay. Results showed that 1 and 2 μM of the viramidine-encapsulated Gal-SLN had the highest cytotoxic effect, achieving 80% cell death with a steady increase over 3 days, with induction of apoptosis and reduction of necrosis and angiogenesis, compared to free-drugs. Gal-SLN application on breast cancer MCF-7 cells confirmed its specificity against liver cancer HepG2 cells. We conclude that viramidine-encapsulated Gal-SLN has anticancer and anti-angiogenic activities against hepatocarcinoma.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Giza, 12622, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, 12622, Egypt
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
5
|
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23:8. [PMID: 30915230 PMCID: PMC6417261 DOI: 10.1186/s40824-019-0156-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene delivery systems are essentially necessary for the gene therapy of human genetic diseases. Gene therapy is the unique way that is able to use the adjustable gene to cure any disease. The gene therapy is one of promising therapies for a number of diseases such as inherited disorders, viral infection and cancers. The useful results of gene delivery systems depend open the adjustable targeting gene delivery systems. Some of successful gene delivery systems have recently reported for the practical application of gene therapy. Main body The recent developments of viral gene delivery systems and non-viral gene delivery systems for gene therapy have briefly reviewed. The viral gene delivery systems have discussed for the viral vectors based on DNA, RNA and oncolytic viral vectors. The non-viral gene delivery systems have also treated for the physicochemical approaches such as physical methods and chemical methods. Several kinds of successful gene delivery systems have briefly discussed on the bases of the gene delivery systems such as cationic polymers, poly(L-lysine), polysaccharides, and poly(ethylenimine)s. Conclusion The goal of the research for gene delivery system is to develop the clinically relevant vectors such as viral and non-viral vectors that use to combat elusive diseases such as AIDS, cancer, Alzheimer, etc. Next step research will focus on advancing DNA and RNA molecular technologies to become the standard treatment options in the clinical area of biomedical application.
Collapse
Affiliation(s)
- Y K Sung
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA.,3Department of Chemistry, Dongguk University, Chung-gu, Seoul 04620 Korea.,4Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, BPRB, Room 205, Salt Lake City, UT 84112 USA
| | - S W Kim
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
6
|
Modified-epsilon-polylysine-grafted-PEI-β-cyclodextrin supramolecular carrier for gene delivery. Carbohydr Polym 2017; 168:103-111. [DOI: 10.1016/j.carbpol.2017.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
|
7
|
Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv 2016; 14:319-330. [PMID: 27426972 DOI: 10.1080/17425247.2016.1214569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Gene therapy is a potential alternative to treat a number of diseases. Different hurdles are associated with aerosol gene delivery due to the susceptibility of plasmid DNA (pDNA) structure to be degraded during the aerosolization process. Different strategies have been investigated in order to protect and efficiently deliver pDNA to the lungs using non-viral vectors. To date, no successful therapy involving non-viral vectors has been marketed, highlighting the need for further investigation in this field. Areas covered: This review is focused on the formulation and delivery of DNA to the lungs, using non-viral vectors. Aerosol gene formulations are divided according to the current delivery systems for the lung: nebulizers, dry powder inhalers and pressurized metered dose inhalers; highlighting its benefits, challenges and potential application. Expert opinion: Successful aerosol delivery is achieved when the supercoiled DNA structure is protected during aerosolization. A formulation strategy or compounds that can protect, stabilize and efficiently transfect DNA into the cells is desired in order to produce an effective, low-cost and safe formulation. Nebulizers and dry powder inhalers are the most promising approaches to be used for aerosol delivery, due to the lower shear forces involved. In this context it is also important to highlight the importance of considering the 'pDNA-formulation-device system' as an integral part of the formulation development for a successful nucleic acid delivery.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Maree Svolos
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Benedikt Hartwig
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Norbert Windhab
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| |
Collapse
|
8
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
9
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
10
|
Kafshdooz T, Kafshdooz L, Akbarzadeh A, Hanifehpour Y, Joo SW. Applications of nanoparticle systems in gene delivery and gene therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:581-7. [DOI: 10.3109/21691401.2014.971805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Mokhtari H, Pelton R, Jin L. Polyvinylamine-g-galactose is a route to bioactivated silica surfaces. J Colloid Interface Sci 2014; 413:86-91. [DOI: 10.1016/j.jcis.2013.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
|
12
|
Parhiz H, Shier WT, Ramezani M. From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. Int J Pharm 2013; 457:237-59. [PMID: 24060371 DOI: 10.1016/j.ijpharm.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
Lack of safe, efficient and controllable methods for delivering therapeutic genes appears to be the most important factor preventing human gene therapy. Safety issues encountered with viral vectors have prompted substantial attention to in vivo investigations with non-viral vectors throughout the past decade. However, developing non-viral vectors with effectiveness comparable to viral ones has been a challenge. The strategy of designing multifunctional synthetic carriers targeting several extracellular and intracellular barriers in the gene transfer pathway has emerged as a promising approach to improving the efficacy of gene delivery systems. This review will explain how sophisticated synthetic vectors can be created by combining conventional polycationic vectors such as polyethylenimine and basic amino acid peptides with additional polymers and peptides that are designed to overcome potential barriers to the gene delivery process.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Pharmaceutical Research Center, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | | |
Collapse
|
13
|
Gajbhiye V, Gong S. Lectin functionalized nanocarriers for gene delivery. Biotechnol Adv 2013; 31:552-62. [DOI: 10.1016/j.biotechadv.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
|
14
|
Zhang M, Zhou X, Wang B, Yung BC, Lee LJ, Ghoshal K, Lee RJ. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. J Control Release 2013; 168:251-61. [PMID: 23567045 PMCID: PMC3672318 DOI: 10.1016/j.jconrel.2013.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
Abstract
Lactosylated gramicidin-containing lipid nanoparticles (Lac-GLN) were developed for delivery of anti-microRNA-155 (anti-miR-155) to hepatocellular carcinoma (HCC) cells. MiR-155 is an oncomiR frequently elevated in HCC. The Lac-GLN formulation contained N-lactobionyl-dioleoyl phosphatidylethanolamine (Lac-DOPE), a ligand for the asialoglycoprotein receptor (ASGR), and an antibiotic peptide gramicidin A. The nanoparticles exhibited a mean particle diameter of 73 nm, zeta potential of +3.5mV, anti-miR encapsulation efficiency of 88%, and excellent colloidal stability at 4°C. Lac-GLN effectively delivered anti-miR-155 to HCC cells with a 16.1- and 4.1-fold up-regulation of miR-155 targets C/EBPβ and FOXP3 genes, respectively, and exhibited significant greater efficiency over Lipofectamine 2000. In mice, intravenous injection of Lac-GLN containing Cy3-anti-miR-155 led to preferential accumulation of the anti-miR-155 in hepatocytes. Intravenous administration of 1.5 mg/kg anti-miR-155 loaded Lac-GLN resulted in up-regulation of C/EBPβ and FOXP3 by 6.9- and 2.2-fold, respectively. These results suggest potential application of Lac-GLN as a liver-specific delivery vehicle for anti-miR therapy.
Collapse
Affiliation(s)
- Mengzi Zhang
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
| | - Xiaoju Zhou
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
- State Key Laboratory of Virology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China
| | - Bo Wang
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Bryant C. Yung
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
| | - Ly J. Lee
- NSF Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD), The Ohio State University, Columbus, Ohio 43210, U.S.A
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Kalpana Ghoshal
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Robert J. Lee
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Division of Pharmaceutics, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- NSF Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD), The Ohio State University, Columbus, Ohio 43210, U.S.A
| |
Collapse
|
15
|
Parhiz H, Hashemi M, Hatefi A, Shier WT, Amel Farzad S, Ramezani M. Arginine-rich hydrophobic polyethylenimine: potent agent with simple components for nucleic acid delivery. Int J Biol Macromol 2013; 60:18-27. [PMID: 23680600 DOI: 10.1016/j.ijbiomac.2013.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/08/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Conjugation of various arginine-rich peptide sequences to vectors based on 10 kDa polyethylenimine (PEI) and its hydrophobic derivative (hexanoate-PEI) was investigated as a strategy for improving pDNA and siRNA transfection activities. Six different arginine-histidine (RH) sequences and two arginine-serine (RS) sequences with a range of R/H ratios were designed and coupled to PEI and hexanoate-PEI. All arginine-rich peptide derivatives of PEI significantly enhanced luciferase gene expression compared to PEI 10 kDa alone. Hexanoate-PEI derivatives exhibited higher transfection activity than underivatized PEI vectors. Improved transfection activity may have resulted at least in part from use of higher vector/DNA ratios made possible by reduced cytotoxicity of vectors, and to use of vectors with higher molecular weights. Vectors that were the most efficient in pDNA delivery and transfection were also the most effective in siRNA delivery and protein expression knock down.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Shukla SC, Singh A, Pandey AK, Mishra A. Review on production and medical applications of ɛ-polylysine. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Abstract
Polylysine and its copolymers have been extensively used as nonviral polymeric gene carriers. Although polylysine on its own is toxic to cells, when polyethylene glycol is covalently linked to polylysine, toxicity is reduced and DNA transfection efficiency is increased. A degradable polylysine analog, polyaminobutyl glycolic acid, has been synthesized. Stearyl polylysine shows strong hydrophobic interactions with low-density lipoprotein and these components can be combined with DNA to form a "terplex" system that allows delivery of DNA to targeted cells and significant levels of transfection both in vitro and in vivo.
Collapse
|
18
|
Paulo CSO, Pires das Neves R, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. NANOTECHNOLOGY 2011; 22:494002. [PMID: 22101232 DOI: 10.1088/0957-4484/22/49/494002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.
Collapse
Affiliation(s)
- Cristiana S O Paulo
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
19
|
Jin H, Yu Y, Chrisler WB, Xiong Y, Hu D, Lei C. Delivery of MicroRNA-10b with Polylysine Nanoparticles for Inhibition of Breast Cancer Cell Wound Healing. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 6:9-19. [PMID: 22259248 PMCID: PMC3256732 DOI: 10.4137/bcbcr.s8513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies revealed that micro RNA-10b (mir-10b) is highly expressed in metastatic breast cancer cells and positively regulates breast cancer cell migration and invasion through inhibition of HOXD10 target synthesis. In this study we designed anti-mir-10b molecules and combined them with poly L-lysine (PLL) to test the delivery effectiveness. An RNA molecule sequence exactly matching the mature mir-10b minor antisense showed strong inhibition when mixed with PLL in a wound-healing assay with human breast cell line MDA-MB-231. The resulting PLL-RNA nanoparticles delivered the anti-microRNA molecules into cytoplasm of breast cancer cells in a concentration-dependent manner that displayed sustainable effectiveness.
Collapse
Affiliation(s)
- Hongjun Jin
- Postdoctoral Research Associate, Cell Biology and Biochemistry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Qin Z, Liu W, Li L, Guo L, Yao C, Li X. Galactosylated N-2-Hydroxypropyl Methacrylamide-b-N-3-Guanidinopropyl Methacrylamide Block Copolymers as Hepatocyte-Targeting Gene Carriers. Bioconjug Chem 2011; 22:1503-12. [DOI: 10.1021/bc100525y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhu Qin
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Liu
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Li
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Liang Guo
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen Yao
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinsong Li
- Biomaterials and Drug Delivery Laboratories, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
21
|
He Y, Yan Q, Song G, Chen J. Spectral study of interaction between poly(L-lysine)-poly(ethylene glycol)-poly(L-lysine) and nucleic acids. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1431-1438. [PMID: 21516339 DOI: 10.1007/s10856-011-4314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/03/2011] [Indexed: 05/30/2023]
Abstract
Polymer-DNA interactions have attracted considerable interests due to their important application in DNA transfection and cellular drug delivery technologies. In this work, a new detection assay for DNA is proposed with a tri-block copolymer poly(L-lysine)-poly(ethylene glycol)-poly(L-lysine) by resonance light scattering technique with the linear ranges from 0.0656 to 6.56 μg ml⁻¹. The detection limit for DNA is 0.42 ng ml⁻¹. Most coexisting substances do not interfere in the detection. UV-spectra and FTIR-spectra were employed to demonstrate the mechanisms of the interaction that the conformation of the DNA changes because the microenvironment of DNA changes.
Collapse
Affiliation(s)
- Yu He
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, People's Republic of China
| | | | | | | |
Collapse
|
22
|
von Erlach T, Zwicker S, Pidhatika B, Konradi R, Textor M, Hall H, Lühmann T. Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA. Biomaterials 2011; 32:5291-303. [PMID: 21514664 DOI: 10.1016/j.biomaterials.2011.03.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 11/28/2022]
Abstract
Successful gene delivery systems deliver DNA in a controlled manner combined with minimal toxicity and high transfection efficiency. Here we investigated 15 different copolymers of poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) of variable grafting densities and PMOXA molecular weights for their potential to complex and deliver plasmid DNA. PLL(20)g(7)PMOXA(4) formed at N/P charge ratio of 3.125 was found to transfect 9 ± 1.6% of COS-7 cells without impairment of cell viability. Furthermore these PLL-g-PMOXA-DNA condensates were internalized 2 h after transfection and localized in the perinuclear region after 6 h. The condensates displayed a hydrodynamic diameter of ∼100 nm and were found to be stable in serum and after 70 °C heat treatment, moreover the condensates protected DNA against DNase-I digestion. The findings suggest that DNA-PMOXA-g-PLL condensate formation for efficient DNA-delivery strongly depends on PMOXA grafting density and molecular weight showing an optimum at low grafting density between 7 and 14% and medium N/P charge ratio (3.125-6.25). Thus, PLL(20)g(7)PMOXA(4) copolymers might be promising as alternative to PLL-g-PEG-DNA condensates for delivery of therapeutic DNA.
Collapse
Affiliation(s)
- Thomas von Erlach
- Cells and BioMaterials, Department of Materials, ETH Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Kim SW. Biomaterials to gene delivery. J Control Release 2011; 155:116-8. [PMID: 21457735 DOI: 10.1016/j.jconrel.2011.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 11/16/2022]
Abstract
It has been over 40 years since I started biomaterials research. This article is a short summary of past research in my laboratory.
Collapse
Affiliation(s)
- Sung Wan Kim
- Department of Pharmaceutics, Pharmaceutical Chemistry, University of Utah, 20 South 2030 East, Salt Lake City, Utah 84112-5820, United States
| |
Collapse
|
24
|
Fernandez CA, Baumhover NJ, Anderson K, Rice KG. Discovery of metabolically stabilized electronegative polyacridine-PEG peptide DNA open polyplexes. Bioconjug Chem 2010; 21:723-30. [PMID: 20218669 DOI: 10.1021/bc900514s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic condensing peptides and polymers bind electrostatically to DNA to form cationic polyplexes. While many cationic polyplexes are able to achieve in vitro transfection mediated through electrostatic interactions, few have been able to mediate gene transfer in vivo. The present study describes the development and testing of polyacridine PEG-peptides that bind to plasmid DNA by intercalation resulting in electronegative open polyplex DNA. Polyacridine PEG-peptides were prepared by chemically conjugating 6-(9-acridinylamino) hexanoic acid onto side chains of Lys in PEG-Cys-Trp-(Lys)(3, 4, or 5). The resulting PEG-Cys-Trp-(Lys-(Acr))(3, 4, or 5) peptides bound tightly to DNA by polyintercalation, rather than electrostatic binding. Unlike polycationic polyplexes, polyacridine PEG-peptide polyplexes were anionic and open coiled, as revealed by zeta potential and atomic force microscopy. PEG-Cys-Trp-(Lys-(Acr))(5) showed the highest DNA binding affinity and the greatest ability to protect DNA from metabolism by DNase. Polyacridine PEG-peptide DNA open polyplexes were dosed intramuscularly and electroporated in mice to demonstrate their functional activity in gene transfer. These results establish polyacridine PEG-peptide DNA open polyplexes as a novel gene delivery method for in vivo use.
Collapse
Affiliation(s)
- Christian A Fernandez
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
25
|
Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 2010; 30:270-89. [PMID: 19626595 DOI: 10.1002/med.20171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted delivery of a drug or gene to its site of action has clear therapeutic advantages by maximizing its therapeutic efficiency and minimizing its systemic toxicity. Generally, targeted drug or gene delivery is performed by loading a macromolecular carrier with an appropriate drug or gene, and by targeting the drug/gene carrier to specific cell or tissue with the help of specific targeting ligand. The emergence of glycobiology, glycotechnology, and glycomics and their continual adaptation by pharmaceutical scientists have opened exciting avenue of medicinal applications of carbohydrates. Among them, the biocompatibility and specific receptor recognition ability confer the ability of carbohydrates as potential targeting ligands for targeted drug and gene delivery applications. This review summarizes recent progress of carbohydrate-decorated targeted drug/gene delivery applications.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | |
Collapse
|
26
|
Wang W, Zhao X, Hu H, Chen D, Gu J, Deng Y, Sun J. Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug Deliv 2010; 17:114-22. [DOI: 10.3109/10717540903580176] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
27
|
Voets IK, de Keizer A, Cohen Stuart MA. Complex coacervate core micelles. Adv Colloid Interface Sci 2009; 147-148:300-18. [PMID: 19038373 DOI: 10.1016/j.cis.2008.09.012] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.
Collapse
|
28
|
Lian J, Zhang S, Wang J, Fang K, Zhang Y, Hao Y. Novel galactosylated SLN for hepatocyte-selective targeting of floxuridinyl diacetate. J Drug Target 2008; 16:250-6. [DOI: 10.1080/10611860801902351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29:3477-96. [PMID: 18499247 DOI: 10.1016/j.biomaterials.2008.04.036] [Citation(s) in RCA: 589] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/23/2008] [Indexed: 02/06/2023]
Abstract
Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection and for multi-located tumor sites, i.e. metastases. Non-viral vectors based on the use of cationic lipids or polymers appear to have promising potential, given the problems of safety encountered with viral vectors. Using these non-viral vectors, the current challenge is to obtain a similarly effective transfection to viral ones. Based on the advantages and disadvantages of existing vectors and on the hurdles encountered with these carriers, the aim of this review is to describe the "perfect vector" for systemic gene therapy against cancer.
Collapse
Affiliation(s)
- Marie Morille
- Inserm U646, Ingénierie de la Vectorisation Particulaire, Université d'Angers, 10, rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
30
|
Mann A, Richa R, Ganguli M. DNA condensation by poly-l-lysine at the single molecule level: Role of DNA concentration and polymer length. J Control Release 2008; 125:252-62. [DOI: 10.1016/j.jconrel.2007.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/09/2007] [Accepted: 10/23/2007] [Indexed: 11/25/2022]
|
31
|
Jo JI, Tabata Y. Non-viral gene transfection technologies for genetic engineering of stem cells. Eur J Pharm Biopharm 2008; 68:90-104. [PMID: 17870447 DOI: 10.1016/j.ejpb.2007.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
The recent rapid progress of molecular biology together with the steady progress of genome projects has given us some essential and revolutionary information about DNA and RNA to elucidate various biological phenomena at a genetic level. Under these circumstances, the technology and methodology of gene transfection have become more and more important to enhance the efficacy of gene therapy for several diseases. In addition, gene transfection is a fundamental technology indispensable to the further research development of basic biology and medicine regarding stem cells. Stem cells genetically manipulated will enhance the therapeutic efficacy of cell transplantation. In this paper, the carrier and technology of gene delivery are briefly overviewed while the applications to the basic researches of biology and medicine as well as regenerative medical therapy are introduced. A new non-viral carrier and the cell culture system are described to efficiently manipulate stem cells.
Collapse
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
32
|
|
33
|
Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 2007. [DOI: 10.1016/j.progpolymsci.2007.05.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Okazaki A, Jo JI, Tabata Y. A reverse transfection technology to genetically engineer adult stem cells. ACTA ACUST UNITED AC 2007; 13:245-51. [PMID: 17518561 DOI: 10.1089/ten.2006.0185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new non-viral method of gene transfection was designed to enhance the level of gene expression for rat mesenchymal stem cells (MSCs). Pullulan was cationized using chemical introduction of spermine to prepare cationized pullulan of non-viral carrier (spermine-pullulan). The spermine-pullulan was complexed with a plasmid deoxyribonucleic acid (DNA) of luciferase and coated on the surface of culture substrate together with Pronectin of artificial cell adhesion protein. MSCs were cultured and transfected on the complex-coated substrate (reverse transfection), and the level and duration of gene expression were compared with those of MSCs transfected by culturing in the medium containing the plasmid DNA-spermine-pullulan complex (conventional method). The reverse transfection method enhanced and prolonged gene expression significantly more than did the conventional method. The reverse method permitted the transfection culture of MSCs in the presence of serum, in contrast to the conventional method, which gave cells a good culture condition to lower cytotoxicity. The reverse transfection was carried out for a non-woven fabric of polyethylene terephthalate (PET) coated with the complex and Pronectin using agitation and stirring culture methods. The two methods enhanced the level and duration of gene expression for MSCs significantly more than did the static method. It is possible that medium circulation improves the culture conditions of cells in terms of oxygen and nutrition supply and waste excretion, resulting in enhanced gene expression.
Collapse
Affiliation(s)
- Arimichi Okazaki
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
35
|
|
36
|
Türk M, Dinçer S, Pişkin E. Smart and cationic poly(NIPA)/PEI block copolymers as non-viral vectors:in vitro andin vivo transfection studies. J Tissue Eng Regen Med 2007; 1:377-88. [DOI: 10.1002/term.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Bello-Roufaï M, Lambert O, Pitard B. Relationships between the physicochemical properties of an amphiphilic triblock copolymers/DNA complexes and their intramuscular transfection efficiency. Nucleic Acids Res 2006; 35:728-39. [PMID: 17182627 PMCID: PMC1807968 DOI: 10.1093/nar/gkl860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer (PEO-PPO-PEO) based plasmid delivery systems are increasingly drawing attention in the field of nonviral gene transfer because of their proven in vivo transfection capability. They result from the simple association of DNA molecules with uncharged polymers. We examined the physicochemical properties of PEO-PPO-PEO/DNA mixtures, in which the PEO-PPO-PEO is Lutrol (PEO75-PPO30-PEO75), formulated under various conditions. We found that interactions between PEO-PPO-PEO and DNA are mediated by the central hydrophobic block within the block copolymer. Dynamic light scattering and cryo-electron microscopy showed that the mean diameter of transfecting particles as well as their stability depended on the PEO-PPO-PEO/DNA ratio and on the ionic composition of the formulating medium. The most active formulation promoting a good tissue-distribution and an optimal transfection was characterized by a reduced electrophoretic mobility, a mean hydrodynamic diameter of approximately 250-300 nm and by a conserved B-DNA form as shown by circular dichroism studies. Our study also revealed that the stability of these formulations strongly depended on a concentration balance between the DNA and the PEO-PPO-PEO, over which the DNA conformation was modified, micron-sized particles were generated, and the transgene expression was declined. We showed that the physicochemical properties of PEO-PPO-PEO/DNA formulations directly impact the level of gene expression in transfected muscles.
Collapse
|
38
|
Abstract
The successful gene therapy largely depends on the vector type that allows a selective and efficient gene delivery to target cells with minimal toxicity. Nonviral vectors are much safer and cheaper, can be produced easily in large quantities, and have higher genetic material carrying capacity. However, they are generally less efficient in delivering DNA and initiating gene expression as compared to viral vectors, particularly when used in vivo. As nonviral vectors, polycations may work well for efficient cell uptake and endosomal escape, because they do form compact and smaller complexes with plasmid DNA and carry amine groups, which give positive charge and buffering ability that allows safe escape from endosome/lysosome. However, this is a disadvantage in the following step, which is releasing the plasmid DNA within the cytosol. In order to initiate transcription and enhance gene expression, the polymer/plasmid complex should dissociate after releasing from endosome safely and effectively. There are also other limitations with some of the polycationic carriers, for example, aggregation, toxicity, etc. Intelligent polymers, also called as 'stimuli responsive polymers', have a great potential as nonviral vectors to obtain site-, timing-, and duration period-specific gene expression, which is already exhibited in recent studies that are briefly summarized here.
Collapse
Affiliation(s)
- S Dinçer
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | | | | |
Collapse
|
39
|
Pirollo KF, Dagata J, Wang P, Freedman M, Vladar A, Fricke S, Ileva L, Zhou Q, Chang EH. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of Cancer. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - John Dagata
- National Institute of Standards and Technology
| | | | | | | | | | | | - Qi Zhou
- Georgetown University Medical Center
| | | |
Collapse
|
40
|
Cook SE, Park IK, Kim EM, Jeong HJ, Park TG, Choi YJ, Akaike T, Cho CS. Galactosylated polyethylenimine-graft-poly(vinyl pyrrolidone) as a hepatocyte-targeting gene carrier. J Control Release 2005; 105:151-63. [PMID: 15878633 DOI: 10.1016/j.jconrel.2005.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 03/25/2005] [Accepted: 03/28/2005] [Indexed: 11/20/2022]
Abstract
Polyethylenimine (PEI) has been used for the gene delivery system in vitro and in vivo since it has high transfection efficiency owing to proton buffer capacity. However, the use of PEI for gene delivery is limited due to cytotoxicity, non-specificity and unnecessary interaction with serum components. To overcome cytotoxicity and non-specificity, PEI was coupled with poly(vinyl pyrrolidone) (PVP) as the hydrophilic group to reduce cytotoxicity and lactose bearing galactose group for hepatocyte targeting. The galactosylated-PEI-graft-PVP (GPP) was complexed with DNA, and GPP/DNA complexes were characterized. GPP showed good DNA binding ability, high protection of DNA from nuclease attack. The sizes of DNA complexes show tendency to decrease with an increase of charge ratio and had a minimum value around 59 nm at the charge ratio of 40 for the GPP-1/DNA complex (PVP content: 4.1 mol%). The GPP showed low cytotoxicity. And GPP/DNA complexes were mediated by asialoglycoprotein receptors (ASGP-R)-mediated endocytosis. Also, the transfection efficiency of GPP-1/DNA complex at charge ratio of 40 in the HepG2 was higher than that of PEI/DNA one.
Collapse
Affiliation(s)
- Seung Eun Cook
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60:247-66. [PMID: 15939236 DOI: 10.1016/j.ejpb.2004.11.011] [Citation(s) in RCA: 727] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 10/25/2022]
Abstract
Gene therapy has become a promising strategy for the treatment of many inheritable or acquired diseases that are currently considered incurable. Non-viral vectors have attracted great interest, as they are simple to prepare, rather stable, easy to modify and relatively safe, compared to viral vectors. Unfortunately, they also suffer from a lower transfection efficiency, requiring additional effort for their optimization. The cationic polymer polyethylenimine (PEI) has been widely used for non-viral transfection in vitro and in vivo and has an advantage over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. Here, we give some insight into strategies developed for PEI-based non-viral vectors to overcome intracellular obstacles, including the improvement of methods for polyplex preparation and the incorporation of endosomolytic agents or nuclear localization signals. In recent years, PEI-based non-viral vectors have been locally or systemically delivered, mostly to target gene delivery to tumor tissue, the lung or liver. This requires strategies to efficiently shield transfection polyplexes against non-specific interaction with blood components, extracellular matrix and untargeted cells and the attachment of targeting moieties, which allow for the directed gene delivery to the desired cell or tissue. In this context, materials, facilitating the design of novel PEI-based non-viral vectors are described.
Collapse
Affiliation(s)
- U Lungwitz
- Department of Pharmacy and Chemistry, Pharmaceutical Technology Unit, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
Polymeric gene delivery systems have been developed as an alternative for viral gene delivery systems to overcome the problems in the use of viral gene carriers. Polymeric carriers have many advantages as gene carriers such as low cytotoxicity, low immunogenicity, moderate transfection efficiency, no size-limit, low cost, and reproducibility. In the efforts to develop safe and efficient polymeric gene carriers, polyethylene glycol (PEG) has widely been used because of its excellent characteristics. PEG-conjugated copolymers have advantages for gene delivery: (1) The PEG-conjugated copolymers show low cytotoxicity to cells in vitro and in vivo, (2) PEG increases water-solubility of the polymer/DNA complex, (3) PEG reduces the interaction of the polymer/DNA complex with serum proteins and increases circulation time of the complex, 4) PEG can be used as a spacer between a targeting ligand and a cationic polymer. A targeting ligand at the end of a PEG chain is not disturbed by the interaction of a cationic polymer with plasmid DNA, and the PEG spacer increases the accessibility of the ligand to its receptor. In this review, PEG copolymers as gene carriers are introduced, and their characteristics are discussed.
Collapse
Affiliation(s)
- Minhyung Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
43
|
Hwa Kim S, Hoon Jeong J, Chul Cho K, Wan Kim S, Gwan Park T. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release 2005; 104:223-32. [PMID: 15866348 DOI: 10.1016/j.jconrel.2005.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
A target-specific delivery system of green fluorescent protein (GFP) small interfering RNA (siRNA) plasmid DNA was developed by using folate-modified cationic polyethylenimine (PEI). A GFP siRNA plasmid vector (pSUPER-siGFP), which inhibits the synthesis of GFP, was constructed and used for suppressing GFP expression in folate receptor over-expressing cells (KB cells) in a target-specific manner. A PEI-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate was synthesized as a pSUPER-siGFP plasmid gene carrier. KB cells expressing GFP were treated with various formulations of pSUPER-siGFP/PEI-PEG-FOL complexes to inhibit expression of GFP. The formulated complexes were characterized under various conditions. Their GFP gene inhibition and cellular uptake behaviors were explored by confocal microscopy and flow cytometry analysis. pSUPER-siGFP/PEI-PEG-FOL complexes inhibited GFP expression of KB cells more effectively than pSUPER-siGFP/PEI complexes with no folate moieties and showed far reduced extent of inhibition for folate receptor deficient cells (A549 cells). The results indicated that folate receptor-mediated endocytosis was a major pathway in the process of cellular uptake, suggesting that targeted delivery of siRNA vector could be achieved to a specific cell.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
44
|
Bulmus V. Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. Aust J Chem 2005. [DOI: 10.1071/ch05066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many therapeutic strategies, such as gene therapy and vaccine development require the delivery of polar macromolecules (e.g. DNA, RNA, and proteins) to intracellular sites at a therapeutic concentration. For such macromolecular therapeutics, cellular membranes constitute a major transport barrier that must be overcome before these drugs can exert their biological activity inside cells. A number of biological organisms, e.g. viruses and toxins, efficiently destabilize the cellular membranes upon a trigger, such as low pH, and facilitate the delivery of their biological cargo to the cytoplasm of host cell. pH-responsive synthetic peptides and polymers have been designed to mimic the function of membrane-destabilizing natural organisms and evaluated as a part of drug delivery systems. In this Review, pH-dependent membrane activity of natural and synthetic systems is reviewed, focussing on fundamental and practical aspects of pH-responsive, membrane-disruptive synthetic polymers in intracellular drug delivery.
Collapse
|
45
|
Forrest ML, Gabrielson N, Pack DW. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng 2005; 89:416-23. [PMID: 15627256 DOI: 10.1002/bit.20356] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many human gene therapies will require cell-specific targeting. Though recombinant viruses are much more efficient than nonviral vectors, the latter, especially polymers, have the advantage of being targetable via conjugation of cell-specific ligands, including sugars, peptides, and antibodies, which can be covalently attached to the polymer using a variety of chemistries. Cyclodextrin, which forms inclusion complexes with small hydrophobic molecules, has been incorporated into a gene-delivery polymer and may provide a facile and versatile attachment site for targeting ligands. Polyethylenimine (PEI) was derivatized with beta-cyclodextrin on approximately 10% of the polymer's amines (termed CD-PEI). Human insulin was also derivatized with a hydrophobic palmitate group (pal-HI), which could anchor the protein to CD-PEI/DNA polyplexes. CD-PEI was essentially nontoxic to HEK293 cells at concentrations optimal for gene delivery and mediated nearly 4-fold higher gene expression than unmodified PEI, which is relatively toxic to these cells. More importantly, addition of the pal-HI to CD-PEI enhanced gene expression by more than an order of magnitude compared to unmodified PEI, either with or without the pal-HI. Because of the relative ease with which CD-binding moieties may be attached to various types of ligands, CD-PEI may be a generally useful material for testing novel cell-specific targeting compounds.
Collapse
Affiliation(s)
- M Laird Forrest
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
46
|
Abstract
Polyethylene glycol (PEG)-peptides are under development as components of nonviral gene delivery systems. Several earlier reports have demonstrated that covalent attachment of PEG to the surface of peptide condensed DNA particles blocks non-specific biodistribution during gene targeting. In this study, we report an improved large-scale synthesis and purification of a DNA condensing PEG-peptide used for gene delivery. The new method takes advantage of low-pressure cation-exchange chromatography to isolate dimeric Cys-Trp-Lys(18). The dimeric peptide was reduced and directly conjugated with PEG-maleimide resulting in PEG-Cys-Trp-Lys(18). The PEG-peptide was purified by low-pressure chromatography affording 50 mumol (400 mg) quantities of PEG-peptide in >95% purity. The approach offers the advantage of avoiding preparative high-performance liquid chromatography (HPLC) purifications of polylysine peptides to increase yield and capacity.
Collapse
Affiliation(s)
- C-P Chen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, 115 South Grand Avenue, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
47
|
Jeong JH, Byun Y, Park TG. Synthesis and characterization of poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) biodegradable micelles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 14:1-11. [PMID: 12635767 DOI: 10.1163/15685620360511100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of amphipathic graft copolymers composed of poly(L-lysine) (PLL) as the cationic polymer backbone and biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) as the grafting chains were synthesized and characterized. The terminal group of PLGA was activated and chemically conjugated to the primary epsilon-amine groups of PLL to produce PLL-g-PLGA copolymers. PLL-g-PLGA formed a self-assembling micelle structure in aqueous solution. The micelle size ranged from 69.4 to 149.6 nm in diameter, depending on the grafting percentage of PLGA. Upon increasing the number of PLGA chains grafted onto the PLL backbone, the size of the micelles gradually decreased, at the same time lowering their critical micelle concentration. The micelles were individually separated and had a spherical geometry, as observed by atomic force microscopy (AFM). These PLL-g-PLGA copolymers can be applied as cell adhesive surface coating materials for biodegradable tissue engineering scaffolds and can be used as non-viral DNA carriers for gene therapy.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, South Korea
| | | | | |
Collapse
|
48
|
Abstract
Smart polymeric materials respond with a considerable change in their properties to small changes in their environment. Environmental stimuli include temperature, pH, chemicals, and light. "Smart" stimuli-sensitive materials can be either synthetic or natural. This review discusses the application of smart materials as tools to solve biological problems such as bioseparation, drug delivery, biosensor design, tissue engineering, protein folding, and microfluidics. The goal for these endeavors is to mimic the "smartness" of biological systems and ultimately moderate complex systems such as immune responses at desired levels. The versatility and untapped potential of smart polymeric materials makes them one of the most exciting interfaces of chemistry and biology.
Collapse
Affiliation(s)
- Ipsita Roy
- Chemistry Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 11 00 16, India
| | | |
Collapse
|
49
|
Parisel C, Saffar L, Gattegno L, André V, Abdul-Malak N, Perrier E, Letourneur D. Interactions of heparin with human skin cells: Binding, location, and transdermal penetration. J Biomed Mater Res A 2003; 67:517-23. [PMID: 14566793 DOI: 10.1002/jbm.a.10085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The development of new materials for tissue engineering of skin substitutes requires an increasing knowledge of their interactions with human skin cells. Since carbohydrate recognition is involved in numerous biologic processes, including skin regeneration, the aim of this study was to identify sugar receptors expressed at the surface of human dermic and epidermic cells. Binding of fluorescent sugar-polyhydroxyethylacrylamide derivatives was analyzed by flow cytofluorimetry on cultured human skin fibroblasts, keratinocytes, and melanocytes. We observed that these three cell types express a membrane receptor specific for GlcNAc6S. Since the polysaccharide heparin contains this sugar moiety, we further investigated the interactions of heparin with skin cells. We analyzed the in vitro cell binding and ex vivo diffusion with the Franz cell of heparin and of two other polysaccharides of similar molecular weight, dextran and chondroitin sulfate. We found evidence of the preferential binding of heparin on keratinocytes and its high transcutaneous penetration of skin. Altogether, our results describe the affinity of heparin for human skin cells and suggest it may be an excellent candidate for use in the skin delivery of drugs or cosmetics and also as an active component in engineered skin.
Collapse
Affiliation(s)
- Claire Parisel
- INSERM ERIT-M 0204, X. Bichat Hospital, University Paris VII & University Paris XIII, 75877 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Kabanov AV, Okano T. Challenges in polymer therapeutics: state of the art and prospects of polymer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 519:1-27. [PMID: 12675205 DOI: 10.1007/0-306-47932-x_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Alexander V Kabanov
- College of Pharmacy, Department of Pharmaceutical Science, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|