1
|
Okonska A, Bühler S, Rao V, Ronner M, Blijlevens M, van der Meulen-Muileman IH, de Menezes RX, Wipplinger M, Oehl K, Smit EF, Weder W, Stahel RA, Penengo L, van Beusechem VW, Felley-Bosco E. Functional Genomic Screen in Mesothelioma Reveals that Loss of Function of BRCA1-Associated Protein 1 Induces Chemoresistance to Ribonucleotide Reductase Inhibition. Mol Cancer Ther 2019; 19:552-563. [PMID: 31619462 DOI: 10.1158/1535-7163.mct-19-0356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
Loss of function of BRCA1-associated protein 1 (BAP1) is observed in about 50% of malignant pleural mesothelioma (MPM) cases. The aim of this study was to investigate whether this aspect could be exploited for targeted therapy. A genetically engineered model was established expressing either functional or nonfunctional BAP1, and whole-genome siRNA synthetic lethality screens were performed assessing differentially impaired survival between the two cell lines. The whole-genome siRNA screen unexpectedly revealed 11 hits (FDR < 0.05) that were more cytotoxic to BAP1-proficient cells. Two actionable targets, ribonucleotide reductase (RNR) catalytic subunit M1 (RRM1) and RNR regulatory subunit M2 (RRM2), were validated. In line with the screen results, primary mesothelioma (BAP1 +/-) overexpressing BAP1 C91A (catalytically dead mutant) was more resistant to RNR inhibition, while BAP1 knockdown in the BAP1-proficient cell lines rescued the cells from their vulnerability to RNR depletion. Gemcitabine and hydroxyurea were more cytotoxic in BAP1-proficient cell line-derived spheroids compared with BAP1 deficient. Upregulation of RRM2 upon gemcitabine and hydroxyurea treatment was more profound in BAP1 mut/del cell lines. Increased lethality mediated by RNR inhibition was observed in NCI-H2452 cells reconstituted with BAP1-WT but not with BAP1 C91A. Upregulation of RRM2 in NCI-H2452-BAP1 WT spheroids was modest compared with control or C91A mutant. Together, we found that BAP1 is involved in the regulation of RNR levels during replication stress. Our observations reveal a potential clinical application where BAP1 status could serve as predictive or stratification biomarker for RNR inhibition-based therapy in MPM.
Collapse
Affiliation(s)
- Agata Okonska
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland
| | - Saskja Bühler
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland
| | - Vasundhara Rao
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland
| | - Maxime Blijlevens
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Renee X de Menezes
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Biostatistics, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland
| | - Kathrin Oehl
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Egbert F Smit
- Department of Thoracic Surgery, NKI, Amsterdam, the Netherlands
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Rolf A Stahel
- Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Lorenza Penengo
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Cordeu L, Cubedo E, Bandrés E, Rebollo A, Sáenz X, Chozas H, Victoria Domínguez M, Echeverría M, Mendivil B, Sanmartin C, Palop JA, Font M, García-Foncillas J. Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem 2006; 15:1659-69. [PMID: 17204425 DOI: 10.1016/j.bmc.2006.12.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/23/2006] [Accepted: 12/08/2006] [Indexed: 01/30/2023]
Abstract
In order to obtain less toxic antitumoral compounds we have looked for novel compounds with anticancer activity based on proapoptotic mechanisms. The compounds studied in this work are derivatives of bicyclic aromatic systems like pyrido[2,3-d]pyrimidines. The potential antitumoral activity of the compounds was evaluated in vitro by examining their cytotoxic effects against human breast, colon, and bladder cancer lines (MD-MBA-231, HT-29, and T-24). The data indicate that HC-6 is a potent anticancer drug showing dose-dependent cytostatic and proapoptotic effects through activation of two different signaling pathways namely a pathway leading to cell cycle arrest and a transcription-independent route leading to rapid apoptosis.
Collapse
Affiliation(s)
- Lucía Cordeu
- Laboratorio de Farmacogenómica, Area de Oncología, Centro de Investigación Médica Aplicada, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cavaleri F, Gentile L, Schöler HR, Boiani M. Recombinant Human Albumin Supports Development of Somatic Cell Nuclear Transfer Embryos in Mice: Toward the Establishment of a Chemically Defined Cloning Protocol. CLONING AND STEM CELLS 2006; 8:24-40. [PMID: 16571075 DOI: 10.1089/clo.2006.8.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Culturing embryos in different media is a useful approach to characterize their nature in regard to "memory" of the donor nucleus and its "reprogramming" after somatic cell nuclear transfer (SCNT). However, efforts to elucidate the mechanisms of reprogramming are seriously undermined when embryo culture conditions are not completely defined. Using recombinant human albumin (rHA) is a step toward establishing defined culture conditions for mouse cloning. Recombinant HA supports blastocyst formation of cumulus cell-derived clones at a rate comparable with two types of bovine serum albumin (BSA); following transfer of blastocysts to the genital tract, rates of development to midgestation (10.5 dpc) were indistinguishable. rHA also supports the derivation of germline competent embryonic stem (ES) cells from SCNT blastocysts at a substantial rate compared with BSA counterparts and with zygotic blastocysts. Unlike the developmental parameters, the gene expression patterns of clones cultured in rHA or BSA were not superimposed; identical patterns were observed for zygotic blastocysts in the two albumins. In summary, the present study demonstrates that (1) rHA can replace BSA, proving a defined protein source for SCNT in mice; (2) although using rHA is similar to BSA, it is not equal (rHA leaves a mark on gene expression of clones but not zygotes). Future studies that investigate reprogramming after SCNT will need to consider not only the implications of culture media for cloning but also the supplement choice.
Collapse
Affiliation(s)
- F Cavaleri
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | |
Collapse
|
4
|
Kroger LA, DeNardo GL, Gumerlock PH, Xiong CY, Winthrop MD, Shi XB, Mack PC, Leshchinsky T, DeNardo SJ. Apoptosis-related gene and protein expression in human lymphoma xenografts (Raji) after low dose rate radiation using 67Cu-2IT-BAT-Lym-1 radioimmunotherapy. Cancer Biother Radiopharm 2001; 16:213-25. [PMID: 11471486 DOI: 10.1089/10849780152389401] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite low radiation dose rates, radioimmunotherapy (RIT) has proven particularly effective in the treatment of malignancies, such as lymphoma. Apoptosis has been suggested to be a major mechanism for cell death from continuous low-dose rate radiation from radioimmunotherapy. The goal of this study was to examine Raji lymphoma xenografts for induction of apoptosis and modulation of apoptosis-related gene and protein expression in response to 67Cu-2IT-BAT-Lym-1 RIT. In preclinical and clinical trials, 67Cu-2IT-BAT-Lym-1 has shown an exceptionally long tumor residence time associated with substantial cumulated radiation doses. The Raji model mirrors human lymphomas that have mutant p53 and increased BCL2 expression. Untreated athymic BALB/c nu/nu mice and mice treated with 400 micrograms Lym-1, or 335-500 microCi 67Cu on less than 400 micrograms Lym-1 antibody, were observed for toxicity and response over 84 days. Subgroups of 4-5 mice were sacrificed at 3, 6 and 24 h after therapy so that tumors could be examined for poly(ADP-ribose) polymerase (PARP) and DNA ladder evidence for apoptosis and for BCL2, p53, p21, GADD45, TGF-beta 1 and c-MYC gene and protein expression. Untreated tumors had little evidence of apoptosis and Lym-1 had no effect on apoptosis or gene expression. 67Cu-2IT-BAT-Lym-1 RIT induced an overall response rate of 50% with tolerable toxicity, and 29% of the tumors were cured at cumulated tumor radiation doses of about 1800 cGy. Apoptosis was greatly increased in the RIT treated Raji xenografts as evidenced by cleavage of PARP to the characteristic 85 kD fragment at 3 and 6 h and by the DNA cleavage pattern. BCL2 gene and protein expression were substantially decreased at 3 and 24 h, respectively, after 67Cu-2IT-BAT-Lym-1 RIT despite only modest cumulated radiation doses (56 cGy at 3 h). Evidence for apoptosis preceded tumor regression by 4-6 days. In these therapy-resistant, human lymphoma tumors treated with 67Cu-2IT-BAT-Lym-1, apoptosis was convincingly demonstrated to be a major mechanism for the effectiveness of RIT and occurred by p53-independent mechanisms.
Collapse
Affiliation(s)
- L A Kroger
- Division of Hematology/Oncology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|