1
|
Iwasa S, Ota H, Nishio K, Ohtsu M, Kusunoki M, Gojoubori T, Shirakawa T, Asano M. Functional expression of TLR5 in murine salivary gland epithelial cells. J Oral Sci 2017; 58:317-23. [PMID: 27665969 DOI: 10.2334/josnusd.15-0588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Toll-like receptors (TLR) recognize microbe-associated molecular patterns and induce the innate immune response. Among them, TLR5 recognizes the Gram-negative bacterial component flagellin. The aim of this study was to examine the expression of TLR5 in mouse salivary gland (SG). The SG was excised from 8- to 10-week-old female C57BL/6 mice. Salivary gland epithelial cells (SGECs) were purified and subjected to reverse transcription polymerase chain reaction (RT-PCR). Western blotting was performed to detect TLR5 expression at the protein level in several organs. The localization of TLR5 in SG was examined using immunohistochemical staining. The responsiveness of SGECs to flagellin was further examined by evaluating the induction of CXCL1 by real-time PCR and immunoprecipitation followed by Western blotting. TLR5 expression in SG was confirmed at the gene and protein levels. Immunohistochemical staining detected TLR5 in both acinic and ductal cells of the sublingual gland, but not in serous acinic cells of the submandibular gland. Although TLR5 was detected throughout the cytoplasm in ductal cells, positive staining was observed on the basal side of the mucous acinic cells. The purified SGECs responded to flagellin and induced the production of CXCL1. These findings suggest that TLR5 is functionally expressed in the SG and responds to its cognate ligand flagellin. (J Oral Sci 58, 317-323, 2016).
Collapse
Affiliation(s)
- Satoko Iwasa
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Okudera M, Gojoubori T, Tsujino I, Asano M. Effect of ionomycin on interaction of calnexin with vesicular stomatitis virus glycoprotein is cell type-specific. J Oral Sci 2015; 57:305-12. [PMID: 26666853 DOI: 10.2334/josnusd.57.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Ionomycin is a calcium ionophore that induces release of calcium ions (Ca(2+)) from cellular storage to cytoplasm and Ca(2+) influx from the outside of the cell. We investigated the effect of ionomycin on endoplasmic reticulum (ER)-Golgi transport in the vesicular stomatitis virus glycoprotein (VSV-G) system. Ionomycin inhibited transport of VSV-G in a concentration-dependent manner in baby hamster kidney (BHK) cells and HeLa cells. Half-maximum inhibition was observed at 5 μM. The inhibitory effect of ionomycin was not dependent on the cytoplasmic portion. Chelation of Ca(2+) in culture medium did not affect transport efficiency, but co-incubation with ionomycin completely shut off transport. These findings highlight the importance of Ca(2+) release from cellular storage. Because the inhibitory effect of ionomycin was expected to be dependent on mutual interaction of VSV-G and the ER chaperone calnexin, we further investigated interaction kinetics. In HeLa cells but not BHK cells the interaction of VSV-G and calnexin was prolonged in the presence of ionomycin. Taken together, the present results indicate that, by releasing Ca(2+) from cellular storage, ionomycin inhibits ER-Golgi transport by interfering with the release of VSV-G from calnexin in HeLa cells. A mechanism of cell type-dependent ER-Golgi transport regulation was revealed.
Collapse
|
3
|
|
4
|
Brunke C, Lohse S, Derer S, Peipp M, Boross P, Kellner C, Beyer T, Dechant M, Royle L, Liew LP, Leusen JHW, Valerius T. Effect of a tail piece cysteine deletion on biochemical and functional properties of an epidermal growth factor receptor-directed IgA2m(1) antibody. MAbs 2013; 5:936-45. [PMID: 24492345 PMCID: PMC3896607 DOI: 10.4161/mabs.26396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
Abstract
Antibodies of human IgA isotype are critical components of the mucosal immune system, but little is known about their immunotherapeutic potential. Compared with IgG antibodies, IgA molecules carry a C-terminal tail piece extension of 18 amino acids with a free cysteine at position 471. This cysteine is required for the formation of dimeric IgA antibodies, but may impair molecular characteristics of monomeric IgA antibodies as therapeutic reagents. Thus, we generated and characterized a d471-mutated antibody against the epidermal growth factor receptor (EGFR) and compared it to its respective IgA2m(1) wild type antibody. Both wild type and mutated IgA antibodies demonstrated similar EGFR binding and were similarly efficient in inhibiting EGF binding and in blocking EGF-mediated cell proliferation. Recruitment of Fc-mediated effector functions like antibody-dependent cell-mediated cytotoxicity by monocytes, macrophages or PMN was similar, but the d471-mutated IgA exhibited different biochemical properties compared with wild type antibody. As expected, mutated IgA did not form stable dimers in the presence of human joining (J)-chain, but we also observed reduced levels of dimeric aggregates in the absence of J-chain. Furthermore, glycoprofiling revealed different glycosylation patterns for both antibodies, including considerably less mannosylation of d471-mutated antibodies. Overall, our results demonstrate that the deletion of the C-terminal cysteine of IgA2 did not affect the investigated effector functions compared with wild type antibody, but it improved biochemical properties of an IgA2m(1) antibody against EGFR, and may thereby assist in exploring the immunotherapeutic potential of recombinant IgA antibodies.
Collapse
Affiliation(s)
- Christina Brunke
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Peter Boross
- Department of Immunology; Laboratory for Immunotherapy; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Thomas Beyer
- Department of Internal Medicine IV, Nephrology and Hypertension; Christian-Albrechts-University, Kiel, Germany
| | - Michael Dechant
- Department of Internal Medicine IV, Nephrology and Hypertension; Christian-Albrechts-University, Kiel, Germany
| | - Louise Royle
- Ludger Ltd; Culham Science Centre; Oxford, United Kingdom
| | - Li Phing Liew
- Ludger Ltd; Culham Science Centre; Oxford, United Kingdom
| | - Jeanette HW Leusen
- Department of Immunology; Laboratory for Immunotherapy; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
5
|
Shionome T, Endo S, Omagari D, Asano M, Toyoma H, Ishigami T, Komiyama K. Nickel ion inhibits nuclear factor-kappa B activity in human oral squamous cell carcinoma. PLoS One 2013; 8:e68257. [PMID: 23844176 PMCID: PMC3700988 DOI: 10.1371/journal.pone.0068257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni2+ ions can influence on IL-8 secretion by OSCC. Methods and Results The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni2+ ions was examined by Ni2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni2+-column pull down assay, Ni2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni2+ ions inhibited the OSCC mobility in a dose dependent fashion. Conclusions Taken together, inhibition of NF-κB activity by Ni2+ ion might be a novel therapeutic strategy for the treatment of oral cancer.
Collapse
Affiliation(s)
- Takashi Shionome
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Shigeki Endo
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
- * E-mail:
| | - Hitoshi Toyoma
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
6
|
Nerve growth factor contribution via transient receptor potential vanilloid 1 to ectopic orofacial pain. J Neurosci 2011; 31:7145-55. [PMID: 21562277 DOI: 10.1523/jneurosci.0481-11.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is well known that oral inflammation causes tenderness in temporomandibular joints or masseter muscles. The exact mechanism of such an orofacial ectopic hyperalgesia remains unclear. Here, we investigated the functional significance of interaction of nerve growth factor (NGF) and transient receptor potential vanilloid 1 (TRPV1) in relation to heat hyperalgesia in the whisker pad skin caused by complete Freund's adjuvant (CFA) injection into the lower lip. CFA injection induced heat hyperalgesia of the ipsilateral whisker pad skin. Moreover, it leads to enhancement of spontaneous activity and heat responses in trigeminal ganglion (TG) neurons that was elicited by heat stimulation of the whisker pad skin. The heat hyperalgesia was dose-dependently reversed by intraperitoneal TRPV1 antagonist administration, also diminished by neutralizing anti-NGF antibody administration into the lower lip and intraganglionic administration of K252a, a tyrosine kinase receptor inhibitor. Nerve fibers in bundle of mandibular nerve and TG neurons that innervates the whisker pad skin and lower lip both expressed labeled NGF, which was administrated into the lower lip. Moreover, the NGF concentrations in ophthalmic-maxillary and mandibular divisions of the TG increased after CFA injection into the lower lip. The number of TRPV1-positive neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip, and this increase was annulled by anti-NGF administration. The present findings suggest that inflammation in the lower lip induces release of NGF that regulates TRPV1 expression in TG neurons. This TRPV1 overexpression may underlie ectopic heat hyperalgesia in the whisker pad skin.
Collapse
|
7
|
Omagari D, Mikami Y, Suguro H, Sunagawa K, Asano M, Sanuki E, Moro I, Komiyama K. Poly I:C-induced expression of intercellular adhesion molecule-1 in intestinal epithelial cells. Clin Exp Immunol 2009; 156:294-302. [PMID: 19284409 DOI: 10.1111/j.1365-2249.2009.03892.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intercellular adhesion molecul-1 (ICAM-1) is a transmembrane glycoprotein belonging to the immunoglobulin superfamily of adhesion molecules and plays perdominant roles in recruitment and trafficking of leucocytes to sites of inflammation. ICAM-1 expression in intestinal epithelial cells (IECs) is enhanced by several stimuli, such as proinflammatory cytokines, bacterial infections or pathogen-associated molecular patterns. One of these stimuli, double-stranded RNA (dsRNA), is a by-product of viral replication and can be recognized by its cognate receptor Toll-like receptor 3 (TLR-3). In spite of expression of both TLR-3 and ICAM-1 in IECs, correlation between TLR-3-signalling and ICAM-1 expression has never been examined in IECs. In the present study, we investigated whether poly I:C, an analogue of dsRNA, can stimulate the expression of ICAM-1 in IEC line, HT-29. Poly I:C-stimulation up-regulated the expression of ICAM-1 mRNA by real-time polymerase chain reaction. Enhanced expression of ICAM-1 was confirmed in protein level by immunofluoresense cell staining and enzyme-linked immunosorbent assay by measuring the released soluble ICAM-1 in culture supernatant. As the stimulation effect was reduced by pre-treatment of the cells with anti-TLR-3 antibody, poly I:C-binding signal was thought to be sensed by TLR-3 on the surface of HT-29. The results of luciferase assay and nuclear factor kappa-b (NF-kappaB) inhibitor treatment experiments indicated that the downstream signal was mainly transduced by transcription factor, NF-kappaB. All these results demonstrated the connection between TLR-3 signalling and ICAM-1 expression in HT-29 cells and indicated the importance of coordinated function of both innate and adaptive immunity against viral infections.
Collapse
Affiliation(s)
- D Omagari
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Omagari D, Iijima M, Suguro H, Sato I, Asano M, Moro I. Differential Distribution of Mouse Polymeric Immunoglobulin Receptor (mpIgR): Establishment of Enzyme-Linked Immunosorbent Assay System for mpIgR. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2008.02166.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|