1
|
He S, Ding Y, Ji Z, Yuan B, Chen J, Ren W. HOPX is a tumor-suppressive biomarker that corresponds to T cell infiltration in skin cutaneous melanoma. Cancer Cell Int 2023; 23:122. [PMID: 37344870 DOI: 10.1186/s12935-023-02962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most threatening type of skin cancer. Approximately 55,000 people lose their lives every year due to SKCM, illustrating that it seriously threatens human life and health. Homeodomain-only protein homeobox (HOPX) is the smallest member of the homeodomain family and is widely expressed in a variety of tissues. HOPX is involved in regulating the homeostasis of hematopoietic stem cells and is closely related to the development of tumors such as breast cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. However, its function in SKCM is unclear, and further studies are needed. METHODS We used the R language to construct ROC (Receiver-Operating Characteristic) curves, KM (Kaplan‒Meier) curves and nomograms based on databases such as the TCGA and GEO to analyze the diagnostic and prognostic value of HOPX in SKCM patients. Enrichment analysis, immune scoring, GSVA (Gene Set Variation Analysis), and single-cell sequencing were used to verify the association between HOPX expression and immune infiltration. In vitro experiments were performed using A375 cells for phenotypic validation. Transcriptome sequencing was performed to further analyze HOPX gene-related genes and their signaling pathways. RESULTS Compared to normal cells, SKCM cells had low HOPX expression (p < 0.001). Patients with high HOPX expression had a better prognosis (p < 0.01), and the marker had good diagnostic efficacy (AUC = 0.744). GO/KEGG (Gene Ontology/ Kyoto Encyclopedia of Genes and Genomes) analysis, GSVA and single-cell sequencing analysis showed that HOPX expression is associated with immune processes and high enrichment of T cells and could serve as an immune checkpoint in SKCM. Furthermore, cellular assays verified that HOPX inhibits the proliferation, migration and invasion of A375 cells and promotes apoptosis and S-phase arrest. Interestingly, tumor drug sensitivity analysis revealed that HOPX also plays an important role in reducing clinical drug resistance. CONCLUSION These findings suggest that HOPX is a blocker of SKCM progression that inhibits the proliferation of SKCM cells and promotes apoptosis. Furthermore, it may be a new diagnostic and prognostic indicator and a novel target for immunotherapy in SKCM patients.
Collapse
Affiliation(s)
- Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| |
Collapse
|
2
|
Bourque J, Kousnetsov R, Hawiger D. Roles of Hopx in the differentiation and functions of immune cells. Eur J Cell Biol 2022; 101:151242. [DOI: 10.1016/j.ejcb.2022.151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
|
3
|
HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol 2021; 141:2354-2368. [PMID: 33845078 DOI: 10.1016/j.jid.2020.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) are frequent heterogeneous tumors arising from sun-exposed regions of the skin and characterized by complex pathogenesis. HOPX is a member of the homeodomain-containing superfamily of proteins holding an atypical homeodomain unable to bind to DNA. First discovered in the heart as a regulator of cardiac development, in the skin, HOPX modulates the terminal differentiation of keratinocytes. There is a particular interest in studying HOPX in squamous skin carcinogenesis because it has the atypical structure and the functional duality as an oncogene and a tumor suppressor gene, reported in different malignancies. In this study, we analyzed the effects of HOPX knockdown and overexpression on SCC tumorigenicity in vitro and in vivo. Our data show that HOPX knockdown in SCC cells inhibits their proliferative and invasive activity through the acceleration of apoptosis. We established that methylation of two alternative HOPX promoters leads to differential expression of HOPX transcripts in normal keratinocytes and SCC cells. Importantly, we report that HOPX acts as an oncogene in the pathogenesis of SCC probably through the activation of the second alternative promoter and the modulation of apoptosis.
Collapse
|
4
|
Lima EU, Rubio IGS, Da Silva JC, Galrão AL, Pêssoa D, Oliveira TC, Carrijo F, Silva Campos I, Fonseca Espinheira L, Sampaio LJ, Lima CR, Cerutti JM, Ramos HE. HOPX homeobox methylation in differentiated thyroid cancer and its clinical relevance. Endocr Connect 2018; 7:1333-1342. [PMID: 30400039 PMCID: PMC6280589 DOI: 10.1530/ec-18-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The inactivation of the tumor-suppressor homeodomain-only protein X (HOPX) usually involves promoter methylation in several cancer types. This study aimed to investigate the HOPX-β mRNA expression and promoter methylation and their clinical relevance in differentiated thyroid cancer (DTC). PATIENTS AND METHODS Clinicopathological data and paraffin-embedded thyroid tumor tissues from 21 patients with DTC and 6 with benign tumors (T) and their non-tumor parenchyma (NT) were investigated. Tumor cell lines (FTC238, FTC236 and WRO) were treated with demethylating agent. HOPX-β mRNA expression was assessed by qRT-PCR and methylation status by Q-MSP. Thyroid cancer data from Cancer Genome Atlas (TCGA) was also collected. RESULTS HOPX-β mRNA re-expression in two cell lines treated with demethylating agent was observed concomitantly with reduced promoter methylation. Reduced mRNA expression in T group compared to their NT was observed, and reduced protein expression in T compared to NT was observed in three cases. Low mRNA expression with high methylation status was detected in 6/14 DTC samples. High methylation status was associated with older age at diagnosis, recurrent or progressive disease and with the presence of new neoplasm event post initial therapy while hyper-methylation correlated with worse overall survival, worse disease-free status and older age. CONCLUSION A moderate coupling of downregulation of HOPX-β mRNA expression in DTC followed by high HOPX-β promoter methylation was observed however; high HOPX promoter methylation status was associated with the worse prognosis of DTC patients.
Collapse
Affiliation(s)
- Erika Urbano Lima
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ileana G S Rubio
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joaquim Custodio Da Silva
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Ana Luiza Galrão
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle Pêssoa
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Taise Cerqueira Oliveira
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Fabiane Carrijo
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | | | - Luciano Fonseca Espinheira
- Department of Pathology, Sao Rafael Hospital, Salvador, Brazil
- Department of Anatomic Pathology & Legal Medicine, Bahia Federal Medical School, Federal University of Bahia, Salvador, Brazil
| | | | | | - Janete Maria Cerutti
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
- Division of Genetics, Department of Morphology and Genetics, Genetic Basis of Thyroid Tumors Laboratory, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helton Estrela Ramos
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Correspondence should be addressed to H E Ramos:
| |
Collapse
|
5
|
Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, Li B, Li Y, Tang X, Wen X, Zhong Q, Kang T, Zeng M, Liu N, Ma J. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun 2017; 8:14053. [PMID: 28146149 PMCID: PMC5296651 DOI: 10.1038/ncomms14053] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by a high rate of local invasion and early distant metastasis. Increasing evidence indicates that epigenetic abnormalities play important roles in NPC development. However, the epigenetic mechanisms underlying NPC metastasis remain unclear. Here we investigate aberrantly methylated transcription factors in NPC tissues, and we identify the HOP homeobox HOPX as the most significantly hypermethylated gene. Consistently, we find that HOXP expression is downregulated in NPC tissues and NPC cell lines. Restoring HOPX expression suppresses metastasis and enhances chemosensitivity of NPC cells. These effects are mediated by HOPX-mediated epigenetic silencing of SNAIL transcription through the enhancement of histone H3K9 deacetylation in the SNAIL promoter. Moreover, we find that patients with high methylation levels of HOPX exhibit poor clinical outcomes in both the training and validation cohorts. In summary, HOPX acts as a tumour suppressor via the epigenetic regulation of SNAIL transcription, which provides a novel prognostic biomarker for NPC metastasis and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Xianyue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, 132 Waihuan Road East, Guangzhou, Guangdong 510006, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Musheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| |
Collapse
|
6
|
Chen Y, Pacyna-Gengelbach M, Deutschmann N, Niesporek S, Petersen I. Homeobox gene HOP has a potential tumor suppressive activity in human lung cancer. Int J Cancer 2007; 121:1021-7. [PMID: 17417779 DOI: 10.1002/ijc.22753] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The homeobox containing gene HOP (Homeodomain Only Protein) was identified in the developing heart and lung where it functions downstream of Nkx2.5 and Nkx2.1 to modulate cardiac and lung gene expression. Previously, we found that HOP was downregulated in lung cancer. In this study, we constructed an expression vector containing the full-length cDNA of HOP and transfected it into a lung cancer cell line H2170. Stable transfection led to an increased expression of HOP confirmed by Northern blot analysis. HOP positive transfectants remarkably reduced the growth rate and the ability of anchorage-independent growth in soft agar, and moreover suppressed the tumor formation in nude mice compared to controls. Transient transfection of Nkx2.1 into H2170 resulted in the overexpression of HOP, and correspondingly, siRNA silencing of Nkx2.1 reduced the expression of HOP in lung cancer cells. Treatment with a differentiation modulating agent 5-bromodeoxyuridine (BrdU) led to restoration of HOP expression in a small cell lung cancer cell line H526. In 29 paired primary lung tumor samples, loss of heterozygosity (LOH) analysis was performed by using the 3 microsatellite markers D4S189, D4S231 and D4S392 around the region of chromosome 4q12 where HOP locates. LOH was only found in 4 out 23 cases (17.4%) indicating that allelic loss is a rare genetic event not responsible for the downregulation of HOP in lung cancer. Taken together, our data suggest that HOP is a potential tumor suppressor possibly involved in lung cancer differentiation, and functions downstream of Nkx2.1.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Pathology, University Hospital Charité, Schumannstr 20-21, D-10098 Berlin, Germany
| | | | | | | | | |
Collapse
|