Schultz AK, Zhang M, Leitner T, Kuiken C, Korber B, Morgenstern B, Stanke M. A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes.
BMC Bioinformatics 2006;
7:265. [PMID:
16716226 PMCID:
PMC1525204 DOI:
10.1186/1471-2105-7-265]
[Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 05/22/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND
Jumping alignments have recently been proposed as a strategy to search a given multiple sequence alignment A against a database. Instead of comparing a database sequence S to the multiple alignment or profile as a whole, S is compared and aligned to individual sequences from A. Within this alignment, S can jump between different sequences from A, so different parts of S can be aligned to different sequences from the input multiple alignment. This approach is particularly useful for dealing with recombination events.
RESULTS
We developed a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach. Given a partition of the aligned input sequence family into known sequence subtypes, our model can jump between states corresponding to these different subtypes, depending on which subtype is locally most similar to a database sequence. Jumps between different subtypes are indicative of intersubtype recombinations. We applied our method to a large set of genome sequences from human immunodeficiency virus (HIV) and hepatitis C virus (HCV) as well as to simulated recombined genome sequences.
CONCLUSION
Our results demonstrate that jumps in our jumping profile HMM often correspond to recombination breakpoints; our approach can therefore be used to detect recombinations in genomic sequences. The recombination breakpoints identified by jpHMM were found to be significantly more accurate than breakpoints defined by traditional methods based on comparing single representative sequences.
Collapse