1
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
2
|
Induced Pluripotent Stem Cell-conditioned Medium Suppressed Melanoma Tumorigenicity Through the Enhancement of Natural-Killer Cellular Immunity. J Immunother 2016; 39:153-9. [PMID: 27023059 DOI: 10.1097/cji.0000000000000117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can secrete cytokines that are involved in T-cell development and affect cytotoxic activity. To assess the effect of iPSC-conditioned medium on tumorigenicity, we retrieved splenocytes from B6 mice and cocultured them with or without irradiated B16 melanoma cells, mouse interleukin-2 (mIL-2), or iPSC-conditioned medium. Splenocyte cytotoxicity assays against B16 melanoma cells [as cytotoxic T lymphocyte (CTL) activity] and P815 cells [as natural killer (NK) activity] were performed. IL-10 and interferon-γ concentrations were measured. An in vivo subcutaneous B16 melanoma growth model was performed in B6 mice and treated with iPSC-conditioned medium. The lymphocyte subpopulation depletion test was performed to determine effectors against B16 melanoma cells. We found that unstimulated splenocytes had little cytotoxic activity. Without tumor cells, mIL-2 could augment iPSC-conditioned medium-treated CTL and NK activities (P<0.01). With irradiated tumor cells, mIL-2 treatment of splenocytes could not enhance CTL or NK activity, but iPSC-conditioned medium could enhance CTL and NK activity (P<0.001). Irradiated tumor cells induced mice splenocytes to secrete more IL-10, similar to mIL-2 treatment, but not iPSC-conditioned medium treatment. mIL-2 had better efficacy than conditioned medium in inducing splenocyte interferon-γ production. The CTL and NK cell depletion test showed that the immunostimulating effect of iPSC-conditioned medium on splenocytes was through the enhancement of NK cellular activity (P<0.05). The subcutaneous melanoma growth model showed that B16-bearing mice treated with an iPSC-conditioned medium intraperitoneal injection had a decreased tumor growth rate (P<0.01). Our study suggests that iPSC-conditioned medium had a protective effect against tumor-induced immunosuppression through the enhancement of host NK cellular activity.
Collapse
|
3
|
Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 2007; 7:1705-21. [PMID: 17961093 DOI: 10.1517/14712598.7.11.1705] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cancer is a multi-faceted disease comprising complex interactions between neoplastic and normal cells. Over the past decade, there has been considerable progress in defining the molecular, cellular and environmental contributions to the pathophysiology of tumor development. Despite these advances, the conventional treatment of patients still generally involves surgery, radiotherapy and/or chemotherapy, and the clinical outcome for many of these efforts remains unsatisfactory. Recent studies have highlighted the feasibility of using immunotherapeutic approaches that seek to enhance host immune responses to developing tumors. These strategies include immunomodulatory cytokines, with TNF-alpha, type I or type II IFNs, IL-2, IL-12, IL-15 and IL-18 being among the most potent inducers of anti-tumor activity in a variety of preclinical studies. More recently, some exciting new cytokines have been characterized, such as IL-21, IL-23, IL-27 and their immunomodulatory and antitumor effects in vitro and in vivo suggest that they may have considerable promise for future immunotherapy protocols. The promise of cytokine therapy does indeed derive from the identification of these novel cytokines but even more fundamentally, the field is greatly benefiting from the ever-expanding amount of preclinical data that convincingly demonstrate synergistic and/or novel biologic effects, which may be achieved through the use of several combinations of cytokines with complementary immune-stimulating capabilities. One cytokine in particular, IL-12, holds considerable promise by virtue of the fact that it plays a central role in regulating both innate and adaptive immune responses, can by itself induce potent anticancer effects, and synergizes with several other cytokines for increased immunoregulatory and antitumor activities. This review discusses the antitumor activity of IL-12, with a special emphasis on its ability to synergize with other cytokines for enhancement of immune effector cell populations and regulation of host-tumor cell interactions and the overall tumor microenvironment.
Collapse
Affiliation(s)
- Jonathan M Weiss
- National Cancer Institute, Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Lymphocytic pleural effusions are characterised by divergent cellular responses depending on the etiology of disease. The pathogenic role of lymphocytes in pleural disease, however, remains unclear. This review provides a basic description of the functions of the different lymphocyte subsets within the pleural space and then summarises recent studies of lymphocyte biology in pleural disease. RECENT FINDINGS The mechanisms of lymphocyte trafficking into the pleural space have been clarified. Specific adhesion molecules (such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) and chemokines (CXCL13, interleukin-8, and monocyte chemotactic protein-1) have been identified as important factors involved in the accumulation of lymphocytes during inflammatory pleuritis. Both cellular and soluble factors may contribute to impaired T-cell immunity in malignant pleural effusions. Studies of natural killer cell and gammadelta T-cell biology indicate that these lymphocyte subsets may also play a role in the pathogenesis of pleural disease. The dominant Th1 response characterised by tuberculous pleuritis may allow for rapid diagnosis of disease. Furthermore, strategies for improving cytotoxic T-cell and natural killer cell function show promise for treatment of malignant pleural disease. SUMMARY Recent work has provided insight into the pathogenesis of disease in lymphocytic pleural effusions. Further study of specific cellular responses may offer significant opportunities in the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Department of Medicine, University of Auckland, New Zealand
| | | |
Collapse
|
5
|
Oshikawa K, Yanagisawa K, Ohno S, Tominaga SI, Sugiyama Y. Expression of ST2 in helper T lymphocytes of malignant pleural effusions. Am J Respir Crit Care Med 2002; 165:1005-9. [PMID: 11934729 DOI: 10.1164/ajrccm.165.7.2105109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to test the hypothesis that accumulated helper T lymphocytes in malignant pleural effusions may shift to T-helper type 2 (Th2) and produce soluble ST2 protein. We took samples of serum and pleural effusions (p-) from patients with carcinomatous pleurisy (CA, n = 17), tuberculous pleurisy (TB, n = 8), and congestive heart failure (HF, n = 5) and compared the concentration of cytokines or ST2. Ex vivo production of interleukin (IL)-4 and IL-10, though not that of interferon (IFN)-gamma or IL-12, from CD4+ T cells isolated from pleural effusions was higher in the CA group than in the TB or HF group. The p-ST2 concentrations were significantly higher in the CA group than in the TB or HF group, positively correlated with the percentage of pleural effusion CD4+ T cells (r = 0.432, p = 0.016) and inversely correlated with p-IFN-gamma concentrations (r = -0.423, p = 0.019). Furthermore, mRNA expression of ST2 in CD4+ T cells isolated from group CA was upregulated, compared with that in those isolated from the TB group. These results suggest that CD4+ T cells in CA shift to Th2, which can produce soluble ST2 protein, resulting in increased concentrations of p-ST2 in malignant pleural effusion.
Collapse
Affiliation(s)
- Katsuhisa Oshikawa
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| | | | | | | | | |
Collapse
|