1
|
Konishi H, Okamoto K, Ohmori Y, Yoshino H, Ohmori H, Ashihara M, Hirata Y, Ohta A, Sakamoto H, Hada N, Katsume A, Kohara M, Morikawa K, Tsukuda T, Shimma N, Foster GR, Alazawi W, Aoki Y, Arisawa M, Sudoh M. An orally available, small-molecule interferon inhibits viral replication. Sci Rep 2012; 2:259. [PMID: 22355771 PMCID: PMC3277087 DOI: 10.1038/srep00259] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
Most acute hepatitis C virus (HCV) infections become chronic and some progress to liver cirrhosis or hepatocellular carcinoma. Standard therapy involves an interferon (IFN)-α-based regimen, and efficacy of therapy has been significantly improved by the development of protease inhibitors. However, several issues remain concerning the injectable form and the side effects of IFN. Here, we report an orally available, small-molecule type I IFN receptor agonist that directly transduces the IFN signal cascade and stimulates antiviral gene expression. Like type I IFN, the small-molecule compound induces IFN-stimulated gene (ISG) expression for antiviral activity in vitro and in vivo in mice, and the ISG induction mechanism is attributed to a direct interaction between the compound and IFN-α receptor 2, a key molecule of IFN-signaling on the cell surface. Our study highlights the importance of an orally active IFN-like agent, both as a therapy for antiviral infections and as a potential IFN substitute.
Collapse
Affiliation(s)
- Hideyuki Konishi
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Alammar L, Gama L, Clements JE. Simian immunodeficiency virus infection in the brain and lung leads to differential type I IFN signaling during acute infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:4008-18. [PMID: 21368232 DOI: 10.4049/jimmunol.1003757] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using an accelerated and consistent SIV pigtailed macaque model of HIV-associated neurologic disorders, we have demonstrated that virus enters the brain during acute infection. However, neurologic symptoms do not manifest until late stages of infection, suggesting that immunological mechanisms exist within the CNS that control viral replication and associated inflammation. We have shown that IFN-β, a type I IFN central to viral innate immunity, is a major cytokine present in the brain during acute infection and is responsible for limiting virus infection and inflammatory cytokine expression. However, the induction and role of IFN-α in the CNS during acute SIV infection has never been examined in this model. In the classical model of IFN signaling, IFN-β signals through the IFN-α/β receptor, leading to expression of IFN-α. Surprisingly, although IFN-β is upregulated during acute SIV infection, we found that IFN-α is downregulated. We demonstrate that this downregulation is coupled with a suppression of signaling molecules downstream of the IFN receptor, namely tyrosine kinase 2, STAT1, and IFN regulatory factor 7, as indicated by either lack of protein phosphorylation, lack of nuclear accumulation, or transcriptional and/or translational repression. In contrast to brain, IFN-α is upregulated in lung and accompanied by activation of tyrosine kinase 2 and STAT1. These data provide a novel observation that during acute SIV infection in the brain, there is differential signaling through the IFN-α/β receptor that fails to activate expression of IFN-α in the brain.
Collapse
Affiliation(s)
- Luna Alammar
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
3
|
Yamamoto K, Taniai M, Torigoe K, Yamamoto S, Arai N, Suemoto Y, Yoshida K, Okura T, Mori T, Fujioka N, Tanimoto T, Miyata M, Ariyasu H, Ushio C, Fujii M, Ariyasu T, Ikeda M, Ohta T, Kurimoto M, Fukuda S. Creation of interferon-alpha8 mutants with amino acid substitutions against interferon-alpha receptor-2 binding sites using phage display system and evaluation of their biologic properties. J Interferon Cytokine Res 2010; 29:161-70. [PMID: 19196068 DOI: 10.1089/jir.2008.0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we describe the creation of three interferon-alpha (IFN-alpha)8 mutants with markedly higher antiviral and antiproliferative activities in comparison with those of the wild-type (wt)IFN-alpha8, wtIFN-alpha2, and IFN-con1 using a phage display system. Sequence analysis showed that three out of the six hot-spot amino acid residues of wtIFN-alpha8 known to be important for the interaction with the IFN-alpha receptor-2 (IFNAR-2)-binding sites were substituted to other amino acids and the others remained. Although affinity analysis revealed that the dissociation constant (K(D)) of IFN-alpha8 mutants was almost the same with that of wtIFN-alpha8, furthermore, the rates of association (k(a)) and dissociation (k(d)) were relatively lower. These results suggest that changes in the surface electronic charge of amino acid residues lead to changes in binding affinity and kinetics (prolonged dissociation time) toward the IFNAR-2, resulting in the modification of the biological activity. Moreover, our results demonstrate that the molecular engineering of the IFN-alpha8 provides important insight into action of IFN and also it would be useful in the development of therapeutically prominent IFN preparations than those used in clinical practice.
Collapse
Affiliation(s)
- Kouzo Yamamoto
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Fujisaki, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Crow MK. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 2010; 12 Suppl 1:S5. [PMID: 21303493 PMCID: PMC2991778 DOI: 10.1186/ar2886] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A significant role for IFNα in the pathogenesis of systemic lupus erythematosus is well supported, and clinical trials of anti-IFNα monoclonal antibodies are in progress in this disease. In other autoimmune diseases characterized by substantial inflammation and tissue destruction, the role of type I interferons is less clear. Gene expression analysis of peripheral blood cells from patients with rheumatoid arthritis and multiple sclerosis demonstrate an interferon signature similar to but less intense than that seen in patients with lupus. In both of those diseases, presence of the interferon signature has been associated with more significant clinical manifestations. At the same time, evidence supports an anti-inflammatory and beneficial role of IFNβ locally in the joints of patients with rheumatoid arthritis and in murine arthritis models, and many patients with multiple sclerosis show a clinical response to recombinant IFNβ. As can also be proposed for type I diabetes mellitus, type I interferon appears to contribute to the development of autoimmunity and disease progression in multiple autoimmune diseases, while maintaining some capacity to control established disease - particularly at local sites of inflammation. Recent studies in both rheumatoid arthritis and multiple sclerosis suggest that quantification of type I interferon activity or target gene expression might be informative in predicting responses to distinct classes of therapeutic agents.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
5
|
Pappas DJ, Coppola G, Gabatto PA, Gao F, Geschwind DH, Oksenberg JR, Baranzini SE. Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiol Genomics 2009; 38:362-71. [PMID: 19531577 DOI: 10.1152/physiolgenomics.00058.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) are pleiotropic cytokines that modulate both innate and adaptive immune responses. They have been used to treat autoimmune disorders, cancers, and viral infection and have been demonstrated to elicit differential responses within cells, despite sharing a single receptor. The molecular basis for such differential responses has remained elusive. To identify the mechanisms underlying differential type I IFN signaling, we used whole genome microarrays to measure longitudinal transcriptional events within human CD4(+) T cells treated with IFN-alpha(2b) or IFN-beta(1a). We identified differentially regulated genes, analyzed them for the enrichment of known promoter elements and pathways, and constructed a network module based on weighted gene coexpression network analysis (WGCNA). WGCNA uses advanced statistical measures to find interconnected modules of correlated genes. Overall, differential responses to IFN in CD4(+) T cells related to three dominant themes: migration, antigen presentation, and the cytotoxic response. For migration, WGCNA identified subtype-specific regulation of pre-mRNA processing factor 4 homolog B and eukaryotic translation initiation factor 4A2, which work at various levels within the cell to affect the expression of the chemokine CCL5. WGCNA also identified sterile alpha-motif domain-containing 9-like (SAMD9L) as critical in subtype-independent effects of IFN treatment. RNA interference of SAMD9L expression enhanced the migratory phenotype of activated T cells treated with IFN-beta compared with controls. Through the analysis of the dynamic transcriptional events after differential IFN treatment, we were able to identify specific signatures and to uncover novel genes that may underpin the type I IFN response.
Collapse
Affiliation(s)
- D J Pappas
- Department of Neurology, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Ushio C, Ariyasu H, Kayano T, Ohta H, Aga M, Ariyasu T, Ohta T, Kurimoto M, Fukuda S. Establishment of Antihuman IFN-α8-Specific Monoclonal Antibodies and Their Application in the Enzyme-Linked Immunosorbent Assay (ELISA). J Interferon Cytokine Res 2008; 28:359-66. [DOI: 10.1089/jir.2007.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chie Ushio
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Harumi Ariyasu
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Tohru Kayano
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Hitomi Ohta
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Miho Aga
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Toshio Ariyasu
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Tsunetaka Ohta
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Masashi Kurimoto
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | - Shigeharu Fukuda
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| |
Collapse
|
7
|
van Boxel-Dezaire AHH, Rani MRS, Stark GR. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity 2006; 25:361-72. [PMID: 16979568 DOI: 10.1016/j.immuni.2006.08.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The type I interferons (IFNs) are pleiotropic cytokines that regulate many different cellular functions. The major signaling pathway activated by type I IFNs involves sequential phosphorylation of the tyrosine residues of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) proteins, providing the primary mechanism through which gene expression is induced. Recent work has shown that the responses are quite complex, as shown by different responses to specific subtypes of type I IFN, activation of kinases in addition to JAKs, patterns of activation of all seven STATs in different cells, and activation of transcription factors other than STATs. The type I IFNs use this complexity to regulate many different biological functions in different types of cells, by activating different specific signals and patterns of gene expression.
Collapse
Affiliation(s)
- Anette H H van Boxel-Dezaire
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
8
|
Rani MRS, Ransohoff RM. Alternative and accessory pathways in the regulation of IFN-beta-mediated gene expression. J Interferon Cytokine Res 2006; 25:788-98. [PMID: 16375607 DOI: 10.1089/jir.2005.25.788] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type I interferons (IFNs) induce the transcription of IFN-stimulated genes (ISGs) through activation of the Jak-Stat pathway. Although some determinants of specificity are dictated by the Jak-Stat components, recent observations indicate that the system incorporates other components for selectivity and flexibility, whose mechanisms remain to be defined. We identified a gene, beta-R1, which was induced relatively selectively by IFN-beta as compared with numerous IFN-alpha subtypes. Because all type I IFNs equally activate Jak-Stat signaling to IFN-stimulated gene factor 3 (ISGF3), this observation implied the existence of accessory signals for IFN-induced gene expression. We have used beta-R1 as a model system to examine this accessory signaling. In addition to Jak-Stat signaling for mediating IFN-induced cellular responses, p38 mitogen-activated protein kinase (p38 MAPK), phosphoinositol 3-kinase (PI3K), the IkappaB kinases (IKKs), and nuclear factor-kappaB (NF-kappaB) are some of the accessory components identified as required for the induction of certain IFN-beta-induced genes. This review focuses on the roles of accessory components in IFN-beta-mediated signaling, mechanisms of accessory signal generation, and how they modulate gene induction.
Collapse
Affiliation(s)
- M R Sandhya Rani
- Department of Neurosciences/NC30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
9
|
Foster GR, Masri SH, David R, Jones M, Datta A, Lombardi G, Runkell L, de Dios C, Sizing I, James MJ, Marelli-Berg FM. IFN-α Subtypes Differentially Affect Human T Cell Motility. THE JOURNAL OF IMMUNOLOGY 2004; 173:1663-70. [PMID: 15265895 DOI: 10.4049/jimmunol.173.3.1663] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type I IFN family includes 14 closely related antiviral cytokines that are produced in response to viral infections. They bind to a common receptor, and have qualitatively similar biological activities. The physiological relevance of this redundancy is still unclear. In this study, we analyzed and compared the effects of two potent antiviral type I IFNs, IFN-alpha 2 and IFN-alpha 8, on the motility of various populations of human T lymphocytes in vitro. In this study, we show that IFN-alpha 2 induces chemokinesis of both CD4(+) and CD8(+) T cells at various stages of differentiation, and induces functional changes that result in enhanced T cell motility, including up-regulation of the integrins LFA-1 and VLA-4, and subsequently, increased ICAM-1- and fibronectin-dependent migration. In contrast, IFN-alpha 8 did not affect T cell motility, despite having similar antiviral properties and similar effects on the induction of the antiviral protein MxA. However, transcription of other IFN-stimulated genes showed that transcription of these genes is selectively activated by IFN-alpha 2, but not IFN-alpha 8, in T cells. Finally, while the antiviral activity of the two subtypes is inhibited by Abs against the two subunits of the IFN-alpha receptor, the chemokinetic effect of IFN-alpha 2 is selectively blocked by Abs against the A1 receptor subunit. These observations are consistent with the possibility that subtype-specific intracellular signaling pathways are activated by type I IFNs in T lymphocytes.
Collapse
Affiliation(s)
- Graham R Foster
- Hepatobiliary Group, Department of Gastroenterology, Queen Mary's School of Medicine and Dentistry at Barts and The Royal London Hospital, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|