Gil J, Rullas J, García MA, Alcamí J, Esteban M. The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-kappaB activation.
Oncogene 2001;
20:385-94. [PMID:
11313968 DOI:
10.1038/sj.onc.1204109]
[Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Revised: 10/30/2000] [Accepted: 11/13/2000] [Indexed: 01/25/2023]
Abstract
The double stranded RNA-dependent protein kinase (PKR), in addition to its role as a translational controlling factor, is a key transcriptional regulator exerting antiviral and antitumoral activities. We have previously shown that induction of NF-kappaB by PKR is involved in apoptosis commitment and this process is mediated through activation of the IKK complex. To gain insights into the mechanism of activation of NF-kappaB by PKR, we have analysed the domains of PKR involved in IKK activation and subsequent NF-kappaB induction. In PKR(0/0) cells infected with a collection of vaccinia virus (VV) recombinants expressing different mutant forms of PKR, we found that only PKR forms conserving the catalytic activity are able to activate NF-kappaB. An inactive PKR mutant (K296R), was unable to induce NF-kappaB activation despite full expression of the protein in a wide range of concentrations, as defined by Western blot, EMSA, IKK kinase activity and NF-kappaB transactivation assays. Moreover, the mutant PKR (K296R) acts as a dominant negative of PKR-induced eIF-2alpha phosphorylation and NF-kappaB activation. However, PKR mutants unable to activate NF-kappaB still retain their ability to associate with the IKK complex, as confirmed by immunoprecipitation analysis. We conclude that the catalytic activity of PKR and not only a protein-protein interaction with the IKK complex, is needed for activation of the transcription factor NF-kappaB.
Collapse