1
|
Tarsitano M, Mancuso A, Cristiano MC, Urbanek K, Torella D, Paolino D, Fresta M. Perspective use of bio-adhesive liquid crystals as ophthalmic drug delivery systems. Sci Rep 2023; 13:16188. [PMID: 37758768 PMCID: PMC10533901 DOI: 10.1038/s41598-023-42185-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The success of many drugs in ophthalmic treatments is hindered by their physico-chemical properties and the limited precorneal retention time. Here, lyotropic liquid crystals are proposed as a new ophthalmic drug delivery system. Acyclovir was chosen as model drug for its solubility and its controlled release from cubic phase was achieved. We demonstrated the effortless application of lamellar phase on corneal surface and its ability to convert itself in cubic phase in situ. While the complex viscosity of lamellar phase was affected by temperature (5.1 ± 1.4 kPa·s at 25 °C and 0.12 ± 0.001 Pa·s at 35 °C, respectively), the cubic phase shown no changes in viscosity values and shear thinning behaviour at both temperatures and even in presence of the drug The degradation kinetic of drug-loaded cubic phase was slightly slower than the empty formulation, recording 27.92 ± 1.43% and 33.30 ± 3.11% of weight loss after 8 h. Ex vivo studies conducted on porcine eyeballs and isolated cornea confirmed the instantaneous transition to cubic phase, its ability to resist to gravity force, and forced dripping of simulated tear fluid. Histopathological investigation showed how treated cornea did not report changes in epithelial and stroma structures. In summary, lyotropic liquid crystals could represent an advantageous ophthalmic drug delivery system.
Collapse
Affiliation(s)
- Martine Tarsitano
- Department of Health Science, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Panzini 5, 80131, Naples, Italy
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Science, University Magna Graecia of Catanzaro, Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
2
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
3
|
Rohde F, Walther M, Baur F, Windbergs M. A Dual‐Function Electrospun Matrix for the Prevention of Herpes Simplex Virus‐1 Infections after Corneal Transplantation. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Felix Rohde
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Florentin Baur
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
4
|
Suwannoi P, Sarisuta N. Preparation process by desolvation method for enhanced loading of acyclovir nanoparticles. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this investigation was to qualitatively study on preparation process of enhanced loading acyclovir (ACV) in ACV-loaded bovine serum albumin (BSA) prepared by desolvation method with submerged jet of desolvating agent. The prepared ACV-loaded BSA nanoparticles in sterile water for injection (SWI) and isotonic trehalose solution were shown to be monodisperse with sizes of around 120 to 200 nm and zeta potentials of around -7 to -50 mV. However, those in phosphate buffer saline (PBS) were found to exhibit much larger sizes with polydispersity, which might be attributed to the effect of ionic strength. The loading efficiency was found to be around 60%. An increase in the amount of ACV added to the system could significantly improve the loading capacity by almost the same ratio, which may be due to molecular mixing behavior of submerged jet of desolvating agent.
Collapse
|
5
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
6
|
Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir. Molecules 2021; 26:5432. [PMID: 34576904 PMCID: PMC8470285 DOI: 10.3390/molecules26185432] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment of herpes simplex infection requires high and frequent doses of oral acyclovir to attain its maximum therapeutic effect. The current therapeutic regimen of acyclovir is known to cause unwarranted dose-related adverse effects, including acute kidney injury. For this reason, a suitable delivery system for acyclovir was developed to improve the pharmacokinetic limitations and ultimately administer the drug at a lower dose and/or less frequently. In this study, solid lipid nanoparticles were designed to improve the oral bioavailability of acyclovir. The central composite design was applied to investigate the influence of the materials on the physicochemical properties of the solid lipid nanoparticles, and the optimized formulation was further characterized. Solid lipid nanoparticles formulated from Compritol 888 ATO resulted in a particle size of 108.67 ± 1.03 nm with an entrapment efficiency of 91.05 ± 0.75%. The analyses showed that the optimum combination of surfactant and solid lipid produced solid lipid nanoparticles of good quality with controlled release property and was stable at refrigerated and room temperature for at least 3 months. A five-fold increase in oral bioavailability of acyclovir-loaded solid lipid nanoparticles was observed in rats compared to commercial acyclovir suspension. This study has presented promising results that solid lipid nanoparticles could potentially be used as an oral drug delivery vehicle for acyclovir due to their excellent properties.
Collapse
Affiliation(s)
- Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), Serdang 43400, Malaysia; (S.K.A.); (R.B.)
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), Serdang 43400, Malaysia; (S.K.A.); (R.B.)
| | - Ekram Alias
- UKM Medical Centre, Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | | | - Ahmad Fuad Shamsuddin
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), Serdang 43400, Malaysia; (S.K.A.); (R.B.)
| |
Collapse
|
7
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
8
|
Advancement on Sustained Antiviral Ocular Drug Delivery for Herpes Simplex Virus Keratitis: Recent Update on Potential Investigation. Pharmaceutics 2020; 13:pharmaceutics13010001. [PMID: 33374925 PMCID: PMC7821943 DOI: 10.3390/pharmaceutics13010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
The eyes are the window to the world and the key to communication, but they are vulnerable to multitudes of ailments. More serious than is thought, corneal infection by herpes simplex viruses (HSVs) is a prevalent yet silent cause of blindness in both the paediatric and adult population, especially if immunodeficient. Globally, there are 1.5 million new cases and forty thousand visual impairment cases reported yearly. The Herpetic Eye Disease Study recommends topical antiviral as the front-line therapy for HSV keratitis. Ironically, topical eye solutions undergo rapid nasolacrimal clearance, which necessitates oral drugs but there is a catch of systemic toxicity. The hurdle of antiviral penetration to reach an effective concentration is further complicated by drugs’ poor permeability and complex layers of ocular barriers. In this current review, novel delivery approaches for ocular herpetic infection, including nanocarriers, prodrugs, and peptides are widely investigated, with special focus on advantages, challenges, and recent updates on in situ gelling systems of ocular HSV infections. In general congruence, the novel drug delivery systems play a vital role in prolonging the ocular drug residence time to achieve controlled release of therapeutic agents at the application site, thus allowing superior ocular bioavailability yet fewer systemic side effects. Moreover, in situ gel functions synergistically with nanocarriers, prodrugs, and peptides. The findings support that novel drug delivery systems have potential in ophthalmic drug delivery of antiviral agents, and improve patient convenience when prolonged and chronic topical ocular deliveries are intended.
Collapse
|
9
|
Suwannoi P, Chomnawang M, Tunsirikongkon A, Phongphisutthinan A, Müller-Goymann CC, Sarisuta N. TAT-surface modified acyclovir-loaded albumin nanoparticles as a novel ocular drug delivery system. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int J Pharm 2018; 539:83-94. [DOI: 10.1016/j.ijpharm.2018.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
|
11
|
Chen Y, Kalia YN. Short-duration ocular iontophoresis of ionizable aciclovir prodrugs: A new approach to treat herpes simplex infections in the anterior and posterior segments of the eye. Int J Pharm 2018; 536:292-300. [DOI: 10.1016/j.ijpharm.2017.11.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023]
|
12
|
Suwannoi P, Chomnawang M, Sarisuta N, Reichl S, Müller-Goymann CC. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells. J Ocul Pharmacol Ther 2017; 33:743-752. [DOI: 10.1089/jop.2017.0057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Panita Suwannoi
- Department of Manufacturing Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Narong Sarisuta
- Department of Manufacturing Pharmacy, Mahidol University, Bangkok, Thailand
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani, Thailand
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
13
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
14
|
Szczubiałka K, Pyrć K, Nowakowska M. In search for effective and definitive treatment of herpes simplex virus type 1 (HSV-1) infections. RSC Adv 2016. [DOI: 10.1039/c5ra22896d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) is a nuclear replicating enveloped virus.
Collapse
Affiliation(s)
| | - Krzysztof Pyrć
- Faculty of Biochemistry, Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Kraków
- Poland
| | | |
Collapse
|
15
|
Chetoni P, Monti D, Tampucci S, Matteoli B, Ceccherini-Nelli L, Subissi A, Burgalassi S. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 2015; 492:120-6. [DOI: 10.1016/j.ijpharm.2015.05.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
16
|
Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, Ismail NM. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2014; 23:1075-91. [DOI: 10.3109/10717544.2014.943336] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Igor Iezhitsa
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russian Federation, and
| | - Puneet Agarwal
- Department of Ophthalmology, IMU Clinical School, International Medical University, Jalan Rasah, Seremban, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Norhafiza Razali
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
| | - Nafeeza Mohd Ismail
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
17
|
Ameeduzzafar, Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv 2014; 23:710-26. [DOI: 10.3109/10717544.2014.923065] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ameeduzzafar
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| | - Mohd Fazil
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| | - Mohd Qumbar
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| | - Nazia Khan
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| | - Asgar Ali
- Pharmaceutics PhD Lab, Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
|
19
|
Vanić Ž, Škalko-Basnet N. Mucosal nanosystems for improved topical drug delivery: vaginal route of administration. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50085-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. ACTA ACUST UNITED AC 2013; 66:507-30. [PMID: 24635555 DOI: 10.1111/jphp.12132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The basic concepts, major mechanisms, technological developments and advantages of the topical application of lipid-based systems (microemulsions, nanoemulsions, liposomes and solid lipid nanoparticles), polymeric systems (hydrogels, contact lenses, polymeric nanoparticles and dendrimers) and physical methods (iontophoresis and sonophoresis) will be reviewed. KEY FINDINGS Although very convenient for patients, topical administration of conventional drug formulations for the treatment of eye diseases requires high drug doses, frequent administration and rarely provides high drug bioavailability. Thus, strategies to improve the efficacy of topical treatments have been extensively investigated. In general, the majority of the successful delivery systems are present on the ocular surface over an extended period of time, and these systems typically improve drug bioavailability in the anterior chamber whereas the physical methods facilitate drug penetration over a very short period of time through ocular barriers, such as the cornea and sclera. SUMMARY Although in the early stages, the combination of these delivery systems with physical methods would appear to be a promising tool to decrease the dose and frequency of administration; thereby, patient compliance and treatment efficacy will be improved.
Collapse
Affiliation(s)
- Joel G Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
21
|
Gang W, Jie WJ, Ping ZL, Ming DS, Ying LJ, Lei W, Fang Y. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv 2013; 9:599-613. [PMID: 22607534 DOI: 10.1517/17425247.2012.679926] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The drug-loaded PEGylated nanomaterials have shown effective cell-killing in vitro, but to the best of authors' knowledge there have been no reports of successful drug delivery in vitro and in vivo using polyethyleneglycol-2000-distearoyl phosphatidyl ethanolamine (PEG2000-DSPE) nanomaterials loaded with unmodified drug molecules, such as quercetin (QUE). In this study, it remained an open question as to whether such formulations could prove effective in vitro and in vivo, and to study the distribution and clearance of PEG-DPSE-ylated lipid-based quercetin nanoliposomes (PEG2000-DPSE-QUE-NLs) as delivery vehicles for the anticancer drug in vitro and in vivo. RESEARCH DESIGN AND METHODS PEG-DPSE layers were attached to QUE-NLs, dispersed in aqueous media and characterized using TEM and HPLC/UV spectroscopy. Tumor cell killing efficacy was assessed in vitro using MTT and trypan blue exclusion assays, and the distribution and clearance pathways, as well as repeated administration in rats, were studied by HPLC spectroscopy. RESULTS PEG2000-DPSE-QUE-NLs were efficiently dispersed in aqueous media compared with controls, and PEGylated (PEG2000-DPSE) NLs were found to be effective drug delivery vehicles when simply loaded with QUE. The plasma QUE concentration decreased significantly (p < 0.05) after repeated administration of PEG2000-DSPE liposomal QUE. There was a slight ABC phenomenon with the PEG2000-DSPE-modified QUE liposomes. CONCLUSION The QUE/PEG2000-DPSE formulation was more effective than QUE in vitro on inhibiting the growth of glioma cancer cells. This work demonstrates that nanomaterials (PEG2000-DPSE) are effective drug delivery vehicles in vivo as tumor-targeted drug carriers.
Collapse
Affiliation(s)
- Wang Gang
- Hubei University of Medicine, Taihe Hospital, Department of Pharmacy, Hubei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez I, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50016-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
|
24
|
Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. Int J Pharm 2012; 443:262-72. [PMID: 23279938 DOI: 10.1016/j.ijpharm.2012.12.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 12/19/2022]
Abstract
Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.
Collapse
Affiliation(s)
- David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino Ospedale S. Luigi Gonzaga,10043 Orbassano, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sharma P, Chawla A, Arora S, Pawar P. Novel drug delivery approaches on antiviral and antiretroviral agents. J Adv Pharm Technol Res 2012; 3:147-59. [PMID: 23057001 PMCID: PMC3459444 DOI: 10.4103/2231-4040.101007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Anuj Chawla
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Pravin Pawar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| |
Collapse
|
26
|
Stella B, Arpicco S, Rocco F, Burgalassi S, Nicosia N, Tampucci S, Chetoni P, Cattel L. Nonpolymeric nanoassemblies for ocular administration of acyclovir: Pharmacokinetic evaluation in rabbits. Eur J Pharm Biopharm 2012; 80:39-45. [DOI: 10.1016/j.ejpb.2011.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
27
|
Abstract
Working at the nanoscale means to completely rethink how to approach engineering in the body in general and in the eye in particular. In nanomedicine, tissue engineering is the ability to influence an environment either by adding, subtracting or manipulating that environment to allow it to be more conducive for its purpose. The goal is to function at the optimum state, or to return to that optimum state. Additive tissue engineering replaces cells or tissue, or tries to get something to grow that is no longer there. Arrestive tissue engineering tries to stop aberrant growth which, if left uncontrolled, would result in a decrease in function. Nano delivery of therapeutics can perform both additive and arrestive functions influencing the environment either way, depending on the targeting. By manipulating the environment at the nanoscale, the rate and distribution of healing can be controlled. It infers that potential applications of nanomedicine in ophthalmology include procedures, such as corneal endothelial cell transplantation, single retinal ganglion cell repair, check of retinal ganglion cell viability, building of nanofibre scaffolds, such as self-assembling peptides, to create a scaffold-like tissue-bridging structure to provide a framework for axonal regeneration in the case of optic nerve reconnection or eye transplantation, and ocular drug delivery. Examples of potential arrestive therapies include gene-related treatment modalities to inhibit intraocular neovascularization and to block retinal cell apoptosis. Looking towards the future, this review focuses on how nanoscale tissue engineering can be and is being used to influence that local environment.
Collapse
Affiliation(s)
- Rutledge Ellis-Behnke
- Department of Anatomy, State Key Lab of Brain & Cognitive Sciences, Research Centre for Heart, Brain and Healthy Aging, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong SAR, China.
| | | |
Collapse
|
28
|
Recent applications of liposomes in ophthalmic drug delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:863734. [PMID: 21490757 PMCID: PMC3066533 DOI: 10.1155/2011/863734] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 01/29/2023]
Abstract
Liposomal formulations were significantly explored over the last decade for the ophthalmic drug delivery applications. These formulations are mainly composed of phosphatidylcholine (PC) and other constituents such as cholesterol and lipid-conjugated hydrophilic polymers. Liposomes are biodegradable and biocompatible in nature. Current approaches for topical delivery of liposomes are focused on improving the corneal adhesion and permeation by incorporating various bioadhesive and penetration enhancing polymers. In the case of posterior segment disorders improvement in intravitreal half life and targeted drug delivery to the retina is achieved by liposomes. In this paper we have attempted to summarize the applications of liposomes in the field of ophthalmic drug delivery by citing numerous investigators over the last decade.
Collapse
|
29
|
Lembo D, Cavalli R. Nanoparticulate Delivery Systems for Antiviral Drugs. ACTA ACUST UNITED AC 2010; 21:53-70. [DOI: 10.3851/imp1684] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.
Collapse
Affiliation(s)
- David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Orbassano Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
30
|
Nair A, Thevenot P, Hu W, Tang L. NANOTECHNOLOGY IN THE TREATMENT AND DETECTION OF INTRAOCULAR CANCERS. J Biomed Nanotechnol 2008; 4:410-418. [PMID: 20668648 PMCID: PMC2910442 DOI: 10.1166/jbn.2008.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Tremendous progress in nanotechnology has lead to the development of nanometer-sized objects as medical implants or devices. Many of these nanodevices have recently been tested in many cancer diagnostic and therapeutic applications, such as leukemia, melanoma, breast tumor, prostate tumor, and brain cancer. Despite the increasing importance of nanotechnology in cancer, the potential of these nanodevices in diagnosing and treating intraocular cancers has not been systematically evaluated. This review summarizes the significant advancements and potential areas for development in the field of nanotechnology-based intraocular drug delivery and imaging.
Collapse
Affiliation(s)
- Ashwin Nair
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019-0138
| | - Paul Thevenot
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019-0138
| | - Wenjing Hu
- Progenitec Inc., Arlington, Texas, 76001
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019-0138
| |
Collapse
|
31
|
Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 2008; 15:313-21. [PMID: 18763162 DOI: 10.1080/10717540802035251] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intranasal route is one of the most attractive routes for distributing drugs to systemic circulation. Liposomes are used as biocompatible carriers to improve delivery properties across nasal mucosa. The objective of the present study was to formulate acyclovir liposomes and partition into poly-N-vinyl-2-pyrrolidone. Entrapment efficiency showed that multilamellar and unilamellar liposomes were 43.2% +/- 0.83 and 21% +/- 1.01, respectively. The bioavailability of acyclovir from nasal mucoadhesive gel was 60.72% compared with intravenous route. The use of liposomes acyclovir and mucoadhesive gel not only promoted the prolonged contact between the drug and the absorptive sites in the nasal cavity, but also facilitated direct absorption through the nasal mucosa.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
32
|
Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res 2008; 26:1261-9. [PMID: 18839288 DOI: 10.1007/s11095-008-9730-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the contribution of amino acid transporters in the transcorneal permeation of the aspartate (Asp) ester acyclovir (ACV) prodrug. METHODS Physicochemical characterization, solubility and stability of acyclovir L-aspartate (L-Asp-ACV) and acyclovir D-aspartate (D-Asp-ACV) were studied. Transcorneal permeability was evaluated across excised rabbit cornea. RESULTS Solubility of L-Asp-ACV and D-Asp-ACV were about twofold higher than that of ACV. The prodrugs demonstrated greater stability under acidic conditions. Calculated pK(a) and logP values for both prodrugs were identical. Transcorneal permeability of L-Asp-ACV (12.1 +/- 1.48 x 10(-6) cm/s) was fourfold higher than D-Asp-ACV (3.12 +/- 0.36 x 10(-6) cm/s) and ACV (3.25 +/- 0.56 x 10(-6) cm/s). ACV generation during the transport process was minimal. L-Asp-ACV transport was sodium and energy dependent but was not inhibited by glutamic acid. Addition of BCH, a specific B(0,+) and L amino acid transporter inhibitor, decreased transcorneal L-Asp-ACV permeability to 2.66 +/- 0.21 x 10(-6) cm/s. L-Asp-ACV and D-Asp-ACV did not demonstrate significant difference in stability in ocular tissue homogenates. CONCLUSION The results demonstrate that enhanced transport of L-Asp-ACV is as a result of corneal transporter involvement (probably amino acid transporter B(0,+)) and not as a result of changes in physicochemical properties due to prodrug derivatization (permeability of D-Asp-ACV and ACV were not significantly different).
Collapse
|
33
|
van Jaarsveld MFPC, Walubo A, du Plessis JB. Interaction between Valproic Acid and Acyclovir after Intravenous and Oral Administration in a Rabbit Model. Basic Clin Pharmacol Toxicol 2007; 101:434-40. [DOI: 10.1111/j.1742-7843.2007.00134.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Abstract
Nanocarriers, such as nanoparticles, liposomes and dendrimers, are used to enhance ocular drug delivery. Easily administered as eye drops, these systems provide a prolonged residence time at the ocular surface after instillation, thus avoiding the clearance mechanisms of the eye. In combination with a controlled drug delivery, it should be possible to develop ocular formulations that provide therapeutic concentrations for a long period of time at the site of action, thereby reducing the dose administered as well as the instillation frequency. In intraocular drug delivery, the same systems can be used to protect and release the drug in a controlled way, reducing the number of injections required. Another potential advantage is the targeting of the drug to the site of action, leading to a decrease in the dose required and a decrease in side effects.
Collapse
Affiliation(s)
- Jo Vandervoort
- Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | |
Collapse
|
35
|
Buech G, Bertelmann E, Pleyer U, Siebenbrodt I, Borchert HH. Formulation of Sirolimus Eye Drops and Corneal Permeation Studies. J Ocul Pharmacol Ther 2007; 23:292-303. [PMID: 17593014 DOI: 10.1089/jop.2006.130] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was the development of eye drops with 1 mg/mL sirolimus and the evaluation of the drug's ability to permeate the freshly isolated pig cornea. Cyclodextrin solutions, liposomes, hydrotrope mixtures, poloxamer gels, and a microemulsion were tested for their suitability to dissolve the extremely hydrophobic drug sirolimus (solubility in water 2.6 microg/mL). The drug content in the formulations was determined by high-performance liquid chromatography, whereas this method is not sensitive enough for the quantification of therapeutic concentrations (7-12 ng/mL). Thus, the acceptor samples of the permeation tests were examined by microparticle enzyme immunoassay. A microemulsion is a suitable vehicle to prepare eye drops with sufficient sirolimus concentrations of 1 mg/mL in a formulation with acceptable tolerance and satisfactory stability over 12 months. However, the drug cannot permeate the intact cornea. After removal of the corneal epithelium, drug concentrations in the acceptor sample reach the lower limit of therapeutical levels. Conclusively, the present sirolimus eye drops might be promising therapeutic tools for the immunomodulatory treatment of ocular surface disorders, such as keratoconjunctivitis sicca, vernal conjunctivitis, or atopical blepharitis. They are not suitable to achieve therapeutic concentrations in the aqueous humour of patients with intact cornea.
Collapse
Affiliation(s)
- Guido Buech
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
36
|
Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007; 28:1553-64. [PMID: 17169422 DOI: 10.1016/j.biomaterials.2006.11.028] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 11/18/2006] [Indexed: 11/22/2022]
Abstract
This study evaluated in vitro and in vivo a colloidal nanosystem with the potential to deliver drugs to the ocular surface. This nanosystem, liposome-chitosan nanoparticle complexes (LCS-NP), was created as a complex between liposomes and chitosan nanoparticles (CS-NP). The conjunctival epithelial cell line IOBA-NHC was exposed to several concentrations of three different LCS-NP complex to determine the cytotoxicity. The uptake of LCS-NP by the IOBA-NHC conjunctival cell line and by primary cultured conjunctival epithelial cells was examined by confocal microscopy. Eyeball and lid tissues from LCS-NP-treated rabbits were evaluated for the in vivo uptake and acute tolerance of the nanosystems. The in vitro toxicity of LCS-NP in the IOBA-NHC cells was very low. LCS-NPs were identified inside IOBA-NHC cells after 15 min and inside primary cultures of conjunctival epithelial cells after 30 min. Distribution within the cells had different patterns depending on the LCS-NP formulation. Fluorescence microscopy of the conjunctiva revealed strong cellular uptake of LCS-NP in vivo and less intensive uptake by the corneal epithelium. No alteration was macroscopically observed in vivo after ocular surface exposure to LCS-NP. Taken together, these data demonstrate that LCS-NPs are potentially useful as drug carriers for the ocular surface.
Collapse
Affiliation(s)
- Yolanda Diebold
- IOBA, University of Valladolid, Ramón y Cajal 7, E-47005 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|